Главная > ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОЙ ТЕОРИИ УСТОЙЧИВОСТИ (Б. П. ДЕМИДОВИЧ)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Определение. Тривиальное решение ξ=0 системы (4.7.1) называется экспоненциально устойчибым при t+ (см. [16]), если для каждого решения x(t)x(t;t0,x0) этой системы в некоторой области t0t<,xh<H справедливо неравенство
x(t)Nx(t0)eα(tt0)(tt0),

где N и α — положительные постоянные, не зависящие от выбора решения x(t).

Легко видеть, что из экспоненциальной устойчивости решения ξ=0 следует его асимптотическая устойчивость. Действительно, полагая
x(t0)<εN=δ,

где ε>0 произвольно, из неравенства (4.8.1) имеем
x(t)<ε при tt0,
т. е. решение ξ=0 устойчиво по Ляпунову. Кроме того, очевидно,
limix(t)=0,

если только x(t0)<h.
Если неравенство (4.8.1) справедливо для всех точек x(t0)
Rxn, то имеет место асимптотическая устойчивость в целом.
Из неравенства (4.8.1) следует, что если тривиальное решение
ξ=0 системы (4.7.1) экспоненциально устойчиво, то близкие
к нему решения x(t) этой системы имеют характеристические показатели χ[x(t)], удовлетворяющие неравенству
χ[x(t)]α<0.

Аналогично определяется экспоненциальная устойчивость нетривиального решения. А именно, решение ξ(t) экспоменциально устойчиво, если близкие к нему при t=t0 решения x(t) удовлетворяют неравенству
x(t)ξ(t)Nx(t0)ξ(t0)eα(tt0)(tt0),

где N и α — некоторые положительные постоянные.
Лемма. Если тривиальное решение однородной линейной си. стемы
dxdt=Ax

с постоянной матрицей A асимптотически устойчиво при t+, то эта система экспоненциально устойчива, т. е. каждое ее решение экспоненциально устойтиво пги t+.

Доказательство. Как известно (гл. II, § 8), тривиальное решение ξ=0 системы (4.8.2) асимптотически устойчиво тогда и только тогда, когда все характеристические корни λp(A) матрицы A имеют отрицательные вещественные части:
Reλp(A)<0(p=1,,n).

Положим
minpReλp(A)<α<0.

Тогда при t0 получим (гл. I,§13 )
etANeαt,

где N-некоторая положительная постоянная. Из уравнения (4.8.2) для любого решения x(t) находим
x(t)=e(tt0)Ax(t0),

где начальный момент t0 произволен.
Следовательно, на основании (4.8.3) при tt0 получаем
x(t)Nx(t0)eα(tt0).

Отсюда для любого решения ξ(t) однородной системы (4.8.2), учитывая, что разность x(t)ξ(t) есть решение этой системы, при tt0 будем иметь
x(t)ξ(t)Nx(t0)ξ(t0)eα(tt0),

что и требовалось доказать.
Замечание. Для линейной системы с переменными коэффициентами из асимптотической устойчивости ее тривиального решения, вообще говоря, не следует экспоненциальная устойчивость.
Пример. Для скалярного уравнения
dxdt=xt(1t<)

его общее решение имеет вид
x(t)=x(1)t.

Таким образом, решение ξ=0 этого уравнения асимптотически устойчиво при t, однако не является экспоненциально устойчивы.

Теорема. Если существует положительно определенная квадратичная форма
V(x)=(Ax,x),

производная которой V˙(x) в силу приведенной системь (4.7.1)
dxdt=X(t,x)(X(t,0)=0)

удовлетворяет неравенству
V˙(x)W(x)(tt0;xh<H),
2e^
W(x)=(Bx,x)
— отрицательно определенная квадратичная форма ( A и B постоянные симметрические матрицы), то тривиальное решение ξ=0 этой системь экспоненциально устойчиво при t+. Доказательство (см. [16]). На основании формул (4.8.4) и (4.8.6) получаем
a(x,x)V(x)a1(x,x)

I!
b(x,x)W(x)b1(x,x),

FIe
a=minpλp(A),a1=maxpλp(A)
i. соответственно,
b=minpλp(B),b1=maxpλp(B),

причем 0<aa1 и 0<bb1.
Отсюда на основании неравенства (4.8.5) выволим
dVdtb(x,x)ba1V(x).

Интегрируя это неравенство, будем иметь при ttθ
V(x(t))V(x(t0))e2α(tt0),

где x=b2a1. Далєе, используя евклидову норму
x2=(x,x),

при tt0 находим
x(t)21aV(x(t))a1ax(t0)2e2a(tt0),
т. е. при tt0,
x(t0)Nx(t0)eα(tt0),
rде
N=a1a

и x(tθ) достаточно мала.

1
Оглавление
email@scask.ru