Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
В предыдущем параграфе мы рассмотрели систему (40.1) при некоторых частных предположениях. Чтобы решить задачу в общем случае, преобразуем эту систему к такому виду, чтобы для нее выполнялись ограничения предыдущего параграфа. Для этого необходимо систему преобразовать так, чтобы она сохранила вид (40.1), но чтобы разложения правых частей уравнений, соответствующих некритическим переменным, после того как в них отбросить все члены, содержащие эти переменные, начинались членами достаточно высокого порядка. С этой целью введем в уравнениях (40.1) новые переменные где Обозначим через Будем, очевидно, иметь: Подберем теперь функции Может случиться, что как бы велико ни было число Но может, однако, случиться, и это будет общим случаем, что при Действительно, так как по условию задача устойчивости для системы (41.4) решается членами порядка не выше Остается показать, как определить функиии где а совокупность членов какого-нибудь Здесь Для того чтобы в функциях (41.3) не было членов первого порядка, необходимо линейные формы Так как функции Допустим, что все функции и так как оно не выполняется ни при каких целых неотрицательных Выясним теперь, сколько членов нужно определить в рядах (41.5) при практическом решении задачи. Для этого вспомним, что если задача устоичивости для системы второго порядка решается членами не свыше какого-нибудь конечного порядка, то этот порядок всегда нечетный. В простейшем случае, который на практике и будет наиболее частым, задача решается членами третьего порядка. Следовательно, нужно, чтобы в разложениях (41.3) отсутствовали члены первого и второго порядков, для чего в функциях Заметим, наконец, что уравнения (41.4) получаются из первых двух уравнений (40.1) заменон переменных в виде рядов (41.5). Поэтому все вышесказанное приводит нас к следующему правилу. Для того чтобы решить задачу устойчивости для системы (40.1), составляем систему уравнений О количестве членов, которые необходимо взять в рядах (41.5) для решения задачи устойчивости, мы уже говорили выше где разложение функции которому стараемся удовлетворить рядом где Первое уравнение дает Полагая мы получим из (41.11) уравнения откуда находим, что Подставляя теперь в первые два уравнения (41.10) вместо где разложения будет функцией знакоопределенной, если только При Пример 2. В качестве второго примера рассмотрим одну из задач устойчивости систем автоматического регулирования, исследованную А. И. Лурье Допустим, что дифференциальные уравнения движения системы (регулируемого объекта, измерительных органов, сервоприводов и т. д.) имеют вид где Предположим, что Рассмотрим систему первого приближения Для того чтобы положение равновесия имели отрицательные вещественные части. При этом величина области устойчивости, как это легко усмогреть из рассуждений Допустим, что все корни где и, следовательно, где а уравнения (41.13) — к виду если только постоянные что мы и будем предполагать. Переменная где Пусть мы приведем уравнения движения к следующему окончательному виду: где пытаемся им удовлетворить рядами Для функций откуда Полагая в этих уравнениях приравнивая коэффициенты при Имея в виду решать в дальнейшем задачу методом § 36 , положим в форме где Подставляя в первые два уравнения (41.17) вместо где Здесь введены обозначения и, следовательно, на основании (41.19) где Полагая в (41.20) найдем: функция Вследствие этого постоянная определяется формулой которая дает: или, принимая во внимание (41.21), Если теперь входящие сюда величины выразить через коэффициенты исходной системы (41.13) и опустить несущественный положительныи множитель где
|
1 |
Оглавление
|