Главная > ТЕОРИЯ УСТОЙЧИВОСТИ ДВИЖЕНИЯ (И.Г.МАМКИЕ)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Результаты предыдущих параграфов показывают, что характеристичные числа систем линейных дифференциальных уравнений с переменными коэффициентами играют для них такую же роль, как характеристические показатели для уравнений с периодическими коэффициентами и корни характеристического уравнения для уравненин с постоянными коэффициентами. Эти числа характеризуют порядок роста решений при t и имеют поэтому основное значение в вопросах устоичивости. Если все характеристичные числа положительны, то все решения рассматриваемой системы линейных уравнений стремятся к нулю при t и, следовательно, для этих уравнений имеет место асимптотическая устоичивость. Напротив, если хотя бы одно из характеристичных чисел отрицательно, то система допускает неограниченные решения и для нее, следовательно, имеет место неустойчивость.

Таким образом, при решении задачи устойчивости для линейных уравнений с переменными коэффициентами необходимо определить знаки ее характеристичных чисел или, по крайней мере, знак наимень-
!) Четаев Н. Г., Устойчивость движения. Гостехиздат, 1946.

шего из них. Эта задача представляет очень большие трудности, и до сих пор нет достаточно эффективных методов ее решения. Мы имеем, конечно, в виду те случаи, когда уравнения не разрешаются в замкнутой форме. С частным случаем этой задачи мы уже встречались в предыдущей главе, где были показаны некоторые приемы приближенного определения характеристических показателей уравненин с периодическими коэффициентами. Наиболее эффективными из этих методов, хотя и имеющими ограннченную область применения, были те, в которых так или иначе применялся малый параметр. Сущность всех этих методов заключается в том, что определение характеристических показателей заданной системы сводят к определению этих величин для другой системы (например, для системы с постоянными коэффициентами), которая мало отличается от заданной и для которой эти величины могут быть определены. При этом используется то обстоятельство, что малое изменение коэффициентов в случае, когда эти коэффициенты периодичны, вызывает малое изменение характеристических показателей.

Это свойство характеристичных чисел уравнений с периодическими коэффициентами не имеет, вообще говоря, места в общем случае уравнений с любыми переменными коэффициентами. Можно привести примеры, когда коэффициенты одной системы уравнений сколь угодно мало отличаются при всех t0 от коэффициентов другой системы уравнений и в то же время характеристичные числа одной системы отличаются на конечные величины от характеристичных чисел другой системы. Таким образом, возникает прежде всего задача о так называемой устойчивости характеристичных чисел систем линейных уравнений. Это понятие может быть определено следующим образом.

Пусть предложена система уравнений с переменными коэффициентами
dxsdt=ps1x1++psnxn(s=1,2,,n),

одновременно с которой мы будем рассматривать другую систему:
dxsdt=(ps1+φs1)x1++(psn+φsn)xn.

Коэффициенты psj и φsj предполагаются ограниченными и непрерывными при t0. Пусть λ1λ2λn — характеристичные числа системы (80.1) и λ1λ2λn — характеристичные числа системы (80.2). Примем следующее определение:

Определение. Характе ристичные числа λ1,λ2,,λn системы (80.1) называются устойчивыми, если для любого сколь угодно малого положительного в можно найти такое положительное число η(ε), что характеристичные числа λi

системы (80.2) удовлетворяют неравенствам
|λiλi|<ε(i=1,2,,n)

при любом выборе функций φsj, удовлетворяющих n ра t0 неравенствам
|φsj(t)|η(s,j=1,2,,n).

Если характеристичные числа системы (80.1) устоичивы, то неравенства (80.3) останутся в силе, когда неравенства (80.4) выполняются не при t0, а при tT, где T — сколь угодно большое число. Это непосредственно вытекает из того, что характеристичные числа системы уравнений, определяемые поведением ее решений при t, зависят лишь от вида коэффициентов \»этих уравнений при tT.

Отсюда следует, что если характеристичные числа системы (80.1) устойивы и если
limtφsj=0(s,j=1,2,,n),

то характеристичные числа системы (80.2) совпадают с характеристичными числами системы (80.1). Действительно, если выполняется (80.5), то можно выбрать настолько большое T, чтобы при tT. неравенства (80.4) выполнялись со сколь угодно малым η. Следовательно, величина ε в неравенствах (80.3) может быть взята сколь угодно малой, что и доказывает, что λi=λi.

1
Оглавление
email@scask.ru