Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Исследование устойчивости не представляет обычно серьезных трудностей в тех случаях, когда дифференциальные уравнения возмущенного движения удается проинтегрировать в замкнутой форме. Но такого рода случаи являются исключительными и на практике почти не встречаются. Поэтому усилия исследователей были направлены к тому, чтобы разработать методы решения задачи устойивости, не прибегая к интегрированию уравнений движения. При этом предшественники Ляпунова пользовались обычно методом линеаризации. Этот метод заключается в следующем. Разложим правые части уравнений возмущенного движения (3.2) в ряды по степеням где Так решали задачу устоичиности Томсон и Тэт Но такого рода решение задачи является нестрогим и, вообще говоря, неправильным. Замена нелинейных уравнений (5.1) линейными уравнениями (5.2) является, по существу, заменой одной задачи другой, с которой первая может не иметь ничего общего. Может случиться, что невозмущенное движение при исследовании лишь первого приближения окажется устоичивым, хотя оно в самом деле неустоичиво, и наоборот. Поясним это примерами. Допустим, что дифференциальные уравнения возмущенного движения имеют вид где Установив это, допустим снача.а, что С другой стороны, отбрасывая в уравнениях (5.3) члены третьего порядка, мы для общего решения полученных таким образом уравнений первого приближения будем иметь: где если только Следовательно, в первом приближении невозмущенное движение устойчиво. Однако устойчивость, как это вытекает из (5.6), не будет асимптотической. В действительности же, как мы видели, невозмущенное движение либо асимптотически устойчиво, если а отрицательно, либо неустойчиво, если а положительно. Таким образом, в рассматриваемом случае характер невозмущенного движения определяется членами высших порядков в дифференциальных уравнениях возмущенного движения. В качестве второго примера рассмотрим колебания математического маятника. За невозмущенное движение примем колебание, определяемое начальными условиями Рассмотрим возмущенное движение, определяемое начальными условиями В самом деле, подставляя функцию Следовательно, функция Отсюда, учитывая, что Можно, однако, привести и такие примеры, когда первое приближение действительно решает задачу устойчивости. Отсюда возникает основная задача: установить необходимые и достаточные условия устоћичивости по первому приближению. Эту задачу поставил Ляпунов, который дал полное ее решение для установившихся и периодических решений. Ляпунов дал также решение задачи и для широкого класса неустановившихся движений. Выяснив условия, при которых задача решается в первом приближении, Ляпунов рассмотрел также некоторые основные случаи, когда при исследовании устойчивости нельзя ограничиться рассмотрением первого приближения. Все эти капитальные результаты излагаются ниже. Для решения поставленных задач Ляпунов разработал специальные приемы. Все эти приемы и вообще все способы решения задачи устоичивости Ляпунов разделяет на две категории. К первой категории он относит те способы, которые приводятся к непосредственному рассмотрению возмущенного движения, т. е. к определению общего или частного решения соответствующих дифференциальных уравнений. Эти решения приходится обычно искать под видом некоторых рядов. Совокупность всех способов первой категории Ляпунов называет пе рвым методом Можно, однако, указать и другие способы решения задачи устойчивости, которые не требуют нахэждения частных или общих решений уравнений возмущенного движения, а приводятся к отысканию некоторых функций от В основу своего второго метода Ляпунов кладет несколько основных установленных им теорем. Эти теоремы оказались настолько эффективными, что при помощи их удалось исключительно просто разрешить задачу об устойчивости по первому приближению. Вместе с тем они позволили Ляпунову рассмотреть и некоторые основные случаи, когда первое приближение задачи не решает и, следовательно, когда эта задача делается особенно сложной. Второй метод Ляпунова являетья и в настоящее время основным методом решения задачи устойчивости Изложению основных теорем второго метода Ляпунова и его приложений посвящена следующая глава. При этом для простоты мы ограничиваемся сначала лищь установившимися движениями. Общии случай неустановившихся движений рассматривается в главах V и VI.
|
1 |
Оглавление
|