Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Применение к теории эллипсоида.Этих немногих предложений, которые мы получили из аналитического определения аффинного преобразования, достаточно для того, чтобы составить себе вполне наглядное геометрическое представление об этом преобразовании. При этом нам удалось получить упомянутые предложения проще, чем это обычно делается, благодаря тому, что мы могли воспользоваться понятием вектора, которое в данном случае является самым подходящим вспомогательным средством. Наиболее отчетливую геометрическую картину аффинных преобразований можно получить, если за исходный пункт взять сферу в пространстве R с координатами
Рис. 51 Далее, в силу подобия соответственных рядов точек (см. 4)) серединам хорд сферы также соответствуют середины хорд эллипсоида, а так как первые лежат в одной (диаметральной) плоскости (сферы), то вторые в силу основного свойства 2) также должны лежать в одной плоскости, которую называют диаметральной плоскостью эллипсоида. Но, как известно, все диаметральные плоскости сферы проходят через ее центр М, который делит пополам каждую проходящую через него хорду (диаметр сферы); поэтому соответствующая точка М (центр эллипсоида) принадлежит всем диаметральным плоскостям и делит пополам каждую проходящую через нее хорду (диаметр эллипсоида). Далее, важно установить, что соответствует системе трех взаимно перпендикулярных диаметральных плоскостей сферы. Последняя имеет, очевидно, то характеристическое свойство, что каждая из таких трех плоскостей делит пополам хорды, параллельные линии пересечения двух других плоскостей. Это свойство сохраняется при аффинных преобразованиях, а поэтому каждой тройке взаимно перпендикулярных диаметральных плоскостей сферы соответствует такая тройка диаметральных плоскостей эллипсоида, что хорды, параллельные линии пересечения каких-либо двух из этих плоскостей, делятся третьей плоскостью пополам. Такие три плоскости называют тройкой сопряженных диаметральных плоскостей, а их три линии пересечения — тройкой сопряженных диаметров. Но каждый эллипсоид имеет, — конечно, здесь я могу считать это известным — три так называемые главные оси, т. е. тройку сопряженных диаметров, из которых каждый перпендикулярен двум другим. Согласно предыдущему им соответствуют в силу нашего аффинного преобразования три взаимно перпендикулярных диаметра сферы в Для простоты принимаем, что центрами эллипсоида и шара являются начала координат в
Но при нашем выборе новых систем координат оси Поэтому каждое аффинное преобразование с точностью до надлежащим образом выбранных поворотов представляет собой не что иное, как так называемое «чистое аффинное преобразование»
или, как говорят физики, чистую однородную деформацию (по-английски pure strain). Содержание этих уравнений поддается, очевидно, простой геометрической интерпретации. А именно: пространство растягивается (или соответственно сжимается, если Мы можем поэтому кратко охарактеризовать чистое аффинное преобразование как равномерное растяжение (сжатие) пространства по трем взаимно перпендикулярным направлениям и получаем, таким образом, геометрическую картину, нагляднее которой едва ли можно требовать. При введении косоугольных координат все принимает еще более простой вид. А именно, в пространстве R выбираем, не изменяя положения начала, какую-либо произвольную прямоугольную или косоугольную систему осей Итак, при применении (косоугольных) декартовых координат, отнесенных к двум соответственным тройкам осей, уравнения аффинного преобразования сами собой получают эту простую специальную форму В связи с этими рассуждениями можно получить очень изящное решение задачи о нахождении механизма, позволяющего производить аффинные преобразования. Эту задачу я поставил в зимнем семестре 1908/09 г. во время чтения курса механики. Наилучшее решение как с точки зрения основных идей, так и в смысле целесообразности технического устройства механизма дал Ремак. Основным кинематическим элементом, использованным Ремаком, являются так называемые «нюрнбергские ножницы»; это — цепь шарнирно связанных стержней, образующих ряд подобных друг другу параллелограммов. Вершины
Рис. 52 Если из трех таких ножниц составить треугольник, соединяя их шарнирно в каких-нибудь вершинах S, то система точек, образованная из всех шарнирных точек S, будет преобразовываться аффинно при всяком изменении всей шарнирной системы; к этому можно непосредственно прийти, приняв диагонали двух из этих ножниц за оси косоугольной системы координат (рис. 53).
Рис. 53 Другие точки, которые одновременно подвергаются тому же аффинному преобразованию, можно получить, помещая между какими-либо двумя шарнирными точками треугольника еще одни ножницы того же рода и рассматривая их шарнирные точки (на рисунке все ножницы обозначены их диагональными прямыми). Следуя этому принципу, можно построить самые разнообразные плоские, а также и пространственные модели аффинно изменяемых систем. Я не буду здесь заниматься дальнейшим разбором воех свойств аффинных преобразований, а покажу лучше, где эти преобразования могут найти себе применение. Начну с примера, который покажет, каким замечательным вспомогательным средством для вывода новых геометрических теорем являются они, а именно, рассмотренное выше аффинное преобразование сферы в эллипсоид дает возможность получить из известных свойств сферы новые предложения об эллипсоиде. Например, при построении каких-нибудь трех взаимно перпендикулярных диаметров сферы и проведении через их концы шести касательных плоскостей, получается описанный около этой сферы куб с объемом Наше аффинное преобразование переводит, очевидно, каждую касательную плоскость сферы в некоторую касательную плоскость эллипсоида. Поэтому при помощи упомянутых предложений находим, что каждому такому кубу, взятому в пространстве R, соответствует в пространстве R некоторый описанный около эллипсоида параллелепипед, грани которого касаются эллипсоида в концах трех взаимно сопряженных диаметров и параллельны соответствующим диаметральным плоскостям, а ребра соответственно параллельны этим трем диаметрам.
Рис. 54 (Аналогичное свойство имеем на плоскости для круга и эллипса, ср. рис. 54.) Это рассуждение можно, очевидно, сразу же обратить: каждому параллелепипеду указанного вида, описанному около эллипсоида, соответствует некоторый куб, описанный около сферы, ибо трем взаимно сопряженным диаметрам эллипсоида соответствуют три взаимно перпендикулярных диаметра сферы. Но нам известно, что при аффинном преобразовании каждый объем умножается на определитель
Она не зависит, очевидно, от того, как расположен наш параллелепипед; он имеет, таким образом, всегда один и тот же постоянный объем независимо от того, к какой тройке сопряженных диаметров он отнесен. В частности, для тройки главных осей, образующих друг с другом прямые углы, получаем прямоугольный параллелепипед, объем которого, очевидно, равен Для доказательства приложимости этой теоремы ко всякому элипсоиду остается еще уяснить себе, что всякий эллипсоид можно получить из сферы путем некоторого аффинного преобразования. Но это сразу получается из вида (6) уравнений аффинного преобразования; из этих уравнений видно, что оси эллипсоида, полученного из сферы, относятся, как Ограничиваясь этим маленьким примером применений аффинных преобразований в теоретической геометрии, я желаю с тем большей силой подчеркнуть, что аффинные преобразования имеют колоссальное значение также и на практике. Обращаясь прежде всего к потребностям физиков, упомяну, что аффинные преобразования играют основную роль в геории упругости, в гидродинамике, вообще в каждой отрасли механики непрерывных сред. Конечно, мне вряд ли следует объяснять это подробнее» Кто хоть немного занимался этими дисциплинами, тот достаточно хорошо знает, что там всякий раз, когда ограничиваются изучением достаточно малых элементов пространства, приходится иметь дело, с однородными линейными деформациями.
|
1 |
Оглавление
|