Главная > Группы петель
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

5.2. Образующие и соотношения

Теперь мы можем описать алгебру Ли а точнее, ее универсальное центральное расширение, с помощью образующих и соотношений. Если конечномерная полупростая алгебра», и если для каждого корня а в корневом пространстве да выбран

ненулевой элемент (см. разд. 2.4), то алгебра порождена элементами более того, она порождена элементами для где простые корни. Скобка пропорциональна кокорню если нормализовать так, что то следующие соотношения образуют полное множество соотношений, определяющих алгебру

Здесь обозначает операцию а — некоторые целые числа, образующие -матрицу, называемую матрицей Картана алгебры Эта матрица полностью определяет структуру алгебры Доказательство см. в [134].

Перейдем теперь к группам петель. Выберем элементы соответствующие простым аффинным корням. В обозначениях разд. 5.1 при 1 в качестве можно взять обычные элементы в а при положить (здесь есть число простых сомножителей

Предложение (5.2.2). Если полупроста, то алгебра Ли порождена элементами соответствующими простым аффинным корням.

Доказательство. Мы можем считать, что проста. Тогда элементы для порождают алгебру Но где а — старший корень в Поскольку присоединенное представление неприводимо, применяя элементы алгебры мы получим все пространство так что содержится в алгебре, порожденной элементами и Далее, элемент пропорционален где а индекс выбран так, чтобы Это дает нам пространство и так далее.

Теперь мы можем сразу же проверить, что в выполняются все соотношения (5.2.1), где пробегают значения от 1 до Матрица Картана (размера задается формулой

где при при Поскольку лишь из векторов линейно независимы, мы видим, что ранг матрицы Картана равен

Хотя соотношения (5.2.1) выполняются в они не образуют ее системы определяющих соотношений. Теорема Габбера и Каца [52], которую мы не будем доказывать в этой утверждает, что эти соотношения задают универсальное центральное расширение алгебры с помощью описываемое коциклом со из (4.2.7). Мы ограничимся здесь тем фактом, что соотношения (5.2.1) выполняются в алгебре Для этого отождествим и определим элементы алгебры формулами

Легко проверить, что элементы удовлетворяют соотношениям (5.2.1). Кроме того, эти элементы порождают алгебру поскольку скалярные произведения порождают пространство

Имея в виду предшествующие формулы, при изучении центрального расширения группы определяемого билинейной формой естественно сопоставить каждому аффинному корню аффинный кокорень определяемый формулой

Беря элемент вместе с мы получим тогда копию алгебры Ли группы вложенную в экспоненцируя, мы приходим к гомоморфизму

Из рассуждений в доказательстве (3.5.3), очевидно, вытекает

Предложение (5.2.5). Если группа G односвязна, то подгрупп соответствующих простым аффинным корням, порождают группу

Пример. Группа порождена подгруппой постоянных петель и копией группы состоящей из элементов

Вторая подгруппа получается из первой внешним автоморфизмом группы соответствующим нетривиальному элементу центра группы (см. (3.4.4)).

1
Оглавление
email@scask.ru