Главная > Уравнения в частных производных математической физики
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 8. Вычисление спектральной функции (полубесконечный интервал)

Чтобы практически осуществить разложение (70) — (71), необходимо определить спектральную функцию От ее свойств и зависит, какие именно из функций участвуют в разложении. Если функция скачков со скачками в точках то в разложении играют роль только функции образующие в совокупности полную счетную систему. В общем же случае множество точек роста функции может состоять из счетной последовательности точек, где она имеет скачки, и точек, заполняющих целые интервалы вещественной оси или, быть может, всю ось. Тогда полную систему на интервале образуют функции соответствующие как счетной последовательности точек скачков, так и некоторому непрерывному множеству значений Разложение функции по функциям будет при этом включать интеграл.

Совокупность точек роста спектральной функции называют спектром сингулярной задачи (62) — (63), причем

совокупность точек, в которых спектральная функция имеет скачки, называют дискретным (или точечным) спектром, а совокупность точек роста, в которых спектральная функция непрерывна, — непрерывным спектром.

Спектральная функция а определяется тем, что сингулярная задача (62) - (63) - предельная в отношении задачи (60)-(61) с вещественным граничным условием при Именно она зависит от предела (67), обобщающего условие вещественности (46) граничных данных при Укажем необходимые для ее вычисления соотношения без доказательства.

Если спектральная функция непрерывна в точках то

где интегрирование ведется вдоль прямой проходящей в верхней полуплоскости параллельно вещественной оси, причем переход к пределу происходит из верхней полуплоскости, а то, предел (67), т. е. предельная точка или точка предельной окружности. В последнем случае спектральная функция зависит от параметра с. Фактически, чтобы однозначно определить нет необходимости знать зависимость от с, достаточно указать значение при некотором фиксированном (см. мелкий шрифт в конце параграфа).

В случае предельной точки предел аналитическая функция I в полуплоскости при отношение если на вещественной оси есть полюсы, то они простые, а вычеты в них отрицательны.

В случае предельного круга предел -функция, аналитическая в любой конечной части плоскости комплексного переменного I всюду, за исключением особых точек, являющихся полюсами; все эти полюсы простые и расположены на вещественной оси, а вычеты в них отрицательны; при вещественных I значения вещественны.

Скачки спектральной функции (73) приходятся на полюсы положение которых, таким образом, определяет точечный спектр.

Пусть полюс Вблизи

где — вычет функции в полюсе малые числа, а многоточием обозначены члены, остающиеся конечными при Выберем число столь малым, чтобы в интервале функция не имела других полюсов кроме

Это всегда можно сделать, так как полюсы — изолированные особые точки. Тогда при спектральная функция непрерывна и согласно (72)

Многоточием здесь обозначены члены, стремящиеся к нулю вместе с В пределе при получим

т. е. скачок спектральной функции в точке разрыва равен вычету в этой точке функции взятому с обратным знаком.

Если в интервале функция не имеет полюсов, то в (73) можно перейти к пределу под знаком интеграла. Взяв затем дифференциал от обеих частей (73), получим

Если предел в правой части равен нулю, то и точка X не является точкой роста спектральной функции, т. е. не принадлежит спектру. В случае предельного круга функция вне полюсов непрерывна и вещественна на оси К. Поэтому Следовательно, в случае предельного круга непрерывный спектр отсутствует и разложение (71) есть бесконечный ряд.

В случае предельной точки функция определена однозначно. Согласно (73) этим однозначно определен спектр и, значит, собственные функции сингулярной задачи случае же предельной окружности для однозначной формулировки сингулярной задачи к (62) — (63) необходимо присоединить условие на бесконечности.

Пусть - точка предельной окружности соответствующей фиксированному и Можно показать, что если спектр задачи при выборе на предельной окружности таз точки то определитель Вронского при обращается в нуль, если I принадлежит спектру и отличен от нуля в противном случае. Поэтому искомое условие на бесконечности можно записать в виде

Из всего многообразия полных систем собственных функций задачи им отбирается то, которое соответствует точке на окружности

Если интервал, для которого ставится задача Штурма-Лиувилля, конечен, но на его верхней границе коэффициенты уравнения имеют (неинтегрируемую) особенность, то все изложенное остается в силе, только предельный переход заменяется переходом от интервала где к интервалу

Если сингулярная задача Штурма — Лиувилля поставлена для интервала то все нужные формулы получаются из указанных выше заменой пределов интегрирования по х на а и функции на функцию являющуюся взятым с обратным знаком пределом выражения (46) при

Укажем в заключение несколько простых признаков существования предельной точки:

а) - где -положительное число, а интеграл расходится при или к точке, в которой коэффициенты уравнения имеют особенность;

б) , где положительное число;

в) при (отметим, что при выполнении этих условий спектр дискретен).

1
Оглавление
email@scask.ru