Главная > Справочник по прикладной статистике. Том 1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.5.2. ТАБЛИЦЫ k x m

В разделе 7.4.1 мы обсуждали таблицы сопряженности, основанные на двойной дихотомии; каждый индивидуум в выборке классифицировался как: а) принадлежащий категории А или нет, а также как б) принадлежащий категории В или нет. Если первую дихотомию заменить разделением на к категорий, а вторую — на то мы получим так называемую таблицу сопряженности :

(см. скан)

В этом случае данные могут быть, например, выборкой из детей школьного возраста, классифицированных по цвету волос (категории и качеству зубов (категории тогда — число школьников с волосами категории и зубами категории . В предположении справедливости нулевой гипотезы независимости (т. е. что цвет волос не влияет на качество зубов, и наоборот) ожидаемая частота, соответствующая наблюденной частоте , равна: а статистика Пирсона имеет вид

Выборочное распределение этой статистики в предположении справедливости нулевой гипотезы представляет собой приблизительно распределение с степенями свободы, где

а уровень значимости равен

Таблица . В случае таблиц сопряженности или

независимость эквивалентна однородности, как в случае таблицы обсуждавшемся в разделе 7.4.1.

(см. скан)

Таким образом, для данных вида независимость качества зубов и цвета волос эквивалентна однородности ожидаемых долей, как показано в следующей таблице: где

(см. скан)

Соответствующие ожидаемые частоты будут равны:

(см. скан)

Итак, чтобы проверить гипотезу, что доля успехов одна и та же в каждой из к совокупностей, можно применить критерий основанный на статистике

считая это число реализацией случайной величины степенями свободы.

1
Оглавление
email@scask.ru