Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.5.4. КВАДРАТИЧЕСКИЕ ФУНКЦИИ НОРМАЛЬНЫХ ПЕРЕМЕННЫХа) Распределение хи-квадрат. Суммы квадратов независимых стандартных нормальных переменных. Квадратичные формы от нормальных переменных. Одним из наиболее важных классов квадратических функций в выборочной теории является класс функций, которые сводятся к суммам квадратов независимых стандартных нормальных переменных. Пусть
Эта величина называется случайной величиной 11.4.11] с
Это унимодальное распределение [см. II, раздел 10.1.3], достигающее максимального значения при
Замечание. Выбор символа отдельного значения переменной Итак, если Выделим случай, когда
Таким образом, распределение Аддитивное свойство переменных Это правило можно распространить и на суммы большего числа переменных. Удобное обозначение: переменная Квадратичные формы, имеющие распределение Хорошо известно, что квадратичные формы, которые нельзя непосредственно выразить в виде сумм квадратов, можно путем преобразований свести к суммам квадратов преобразованных переменных [см. I, раздел 9.1]. Поэтому естественно задать вопрос, не могут ли такие формы иметь распределение Теорема 2.5.1. Необходимые и достаточные условия для того, чтобы квадратичная форма от независимых стандартных нормальных переменных имела распределение Пример 2.5.1. Выборочное распределение суммы квадратов выборки. Просто сумма квадратов стандартных нормальных случайных величин редко используется в качестве статистики, но связанная с ней статистика встречается часто и имеет большое значение. Это сумма квадратов отклонений наблюдений Такая величина
часто называется суммой квадратов выборки. Когда наблюдения Чтобы увидеть, как это получается, рассмотрим Тогда
Далее
Хотя переменные
где
При возведении в квадрат видно, что б) Независимость суммы квадратов и среднего в нормальных выборках. Результаты, обсуждавшиеся в примере 2.5.1, являются частью следующей теоремы. Теорема 2.5.2. Ортогональное разложение
и оба члена в правой части взаимно независимые Эта теорема — частный случай более общего результата, представленного в теореме 2.5.5 в разделе 2.5.8. Она необходима для понимания в) Таблицы распределения
для различных значений а. В таблицах, приведенных, например, в [Pearson and Hartley (1966)- G]
Та же информация [см. указанную выше работу] содержится в таблице (табл. 7) интеграла вероятностей (т.е. непосредственно функции распределения
Таблицы распределения
Из (2.1.15) следует, что
Таблицы
К этому соотношению можно прийти, беря по частям [см. IV, раздел 4.3] интеграл, выражающий
и т.д., пока не будет получен требуемый результат. Это свойство используется в табл. 7 из упомянутой выше работы. Таблица применима как в случае распределения г) Выборочное распределение дисперсии выборки. В выборке
или как
Более употребительно второе определение, которое дает несмещенную [см. II, раздел 3.3.2] оценку Рассмотрим более общую статистику
где делитель
где
где
и
Итак, выборочная дисперсия несмещенной оценки
д) Выборочное распределение стандартного отклонения выборки. Стандартное отклонение выборки можно определить как
где для получения несмещенной оценки
приводит к оценке Пусть V определяется, как и раньше, и пусть
Тогда
П.р.в. этой индуцированной случайной величины в точке
где
Таким образом, момент порядка
Смещение. В частности,
где
Когда
имеет выборочное ожидание
Эта величина всегда меньше единицы. Поэтому оценка (2.5.28) будет смещенной оценкой ст. Величину смещения иллюстрирует табл. 2.5.1. В ней же представлены значения
Таблица 2.5.1. (см. скан) Смешение оценок а Числа во втором столбце Из таблицы можно увидеть, что значение «несмещенного» делителя очень близко к Выборочная дисперсия оценки (2.5.23) параметра
где Таблица 2.5.2. (см. скан) Выборочная дисперсия оценки Из таблицы видно, что смещенная оценка имеет несколько меньшую дисперсию, чем несмещенная, но приближение вида Вероятность того, что оценка укладывается в определенный интервал. Вычисления вероятностей, связанных со случайной переменной
откуда
(Для приложений такого рода недостаточны таблицы процентных точек, которые приведены в приложении 6. Пользуясь таблицами обычной функции распределения
|
1 |
Оглавление
|