Главная > Справочник по прикладной статистике. Том 1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

5.2.6. ВЫБОР СТАТИСТИКИ КРИТЕРИЯ

Ниже приводится пример, в котором статистика критерия подбирается более явно, чем в примерах 5.2.1 и 5.2.2.

Пример 5.2.3. Проверка гипотезы о параметре экспоненциального распределения. Предположим, что имеется реализаций экспоненциально распределенной случайной величины X [см. II, раздел 11.2] с плотностью Нужно проверить нулевую гипотезу Н, в соответствии с которой против односторонней альтернативы Функция правдоподобия имеет вид откуда оказывается достаточной статистикой для в [см. раздел 4.13.1]. Это наводит на мысль, что или подходящее преобразование статистики можно было бы использовать в качестве статистики критерия. Выборочное математическое ожидание равно так что измеряется в тех же единицах, что и будет хорошей оценкой в: при Н большие значения неправдоподобны, но они более вероятны, когда справедлива альтернатива. Итак, х — подходящая статистика критерия.

Чтобы найти уровень значимости, нужно знать выборочное распределение х. Плотность выборочного распределения определяется формулой [см. раздел 2.4]

Таблицы соответствующей функции распределения не всегда доступны, но случайная величина имеет плотность

т. е. подчиняются распределению хи-квадрат с степенями свободы [см. II, раздел 11.2.2, 11.4.11]. Таблицы соответствующей функции распределения вполне доступны. (Здесь ) Уровень значимости среднего выборки равен

(где X обозначает случайную величину, индуцированную статистикой

(где )

при этом подчиняется распределению хи-квадрат с степенями свободы.

С очевидными изменениями эти принципы применимы, когда альтернатива имеет вид Предположим, например, что суммарная продолжительность работы 18 электрических лампочек (допустим, что продолжительность подчинена экспоненциальному распределению) с номинальным сроком эксплуатации 100 часов составила 1500 часов. Здесь значение параметра в при нулевой гипотезе , а уровень значимости равен:

Стандартные таблицы распределения хи-квадрат [см. приложение (6)] дают

откуда

так что

В частности, уровень значимости превышает 0,20, следовательно, результаты не значимы. Данные не позволяют отвергнуть гипотезу, что средняя продолжительность работы лампочки равна 100 часам.

[В этом примере достаточны и неравенства (5.2.11а). Линейная интерполяция дала бы Однако если бы требовался более точный результат, то нужно было бы или воспользоваться более детальными таблицами, или применить подходящее преобразование, приводящее к случайной величине с более детально табулированным распределением. Наиболее известное из таких преобразований при [см. раздел 2.7.3, в)] дает следующее хорошее приближение с помощью стандартной нормально распределенной случайной величины

где

При например, находим так что обеспечиваемый приближением (5.2.12) уровень значимости равен 0,026. Точное же значение равно 0,025].

1
Оглавление
email@scask.ru