Главная > Аналитическая геометрия
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 9. Проекции направленного отрезка на оси координат.

В этом параграфе прежде всего мы дадим формулы, выражающие проекции направленного отрезка на координатные оси.

Пусть известны длина d направленного отрезка АВ и угол а между осью Ох и этим отрезквм (рис. 22).

Рис. 22

Проекцию отрезка АВ на ось Ох получим непосредственно по формуле (9) § 8: . Чтобы выразить проекцию отрезка АВ на ось Оу, заметим, что угол между осью Оу и отрезком АВ равен (действительно, если повернуть ось Оу

сначала на угол затем еще на угол ее положительное направление совпадет с направлением отрезка АВ). Тогда Таким образом,

Предположим теперь, что направленный отрезок АВ расположен на некоторой оси . В таком случае проекции этого отрезка на оси координат можно выразить также через его величину и угол между осью Ох и осью . По формуле (10) будем иметь:

так как угол между осью Оу и осью и равен и следовательно,

Если же направленный отрезок АВ задан координатами его начала и конца то проекции отрезка на оси координат можно выразить через координаты ограничивающих его точек.

Проекция отрезка АВ на ось Ох равна величине направленного отрезка оси Ох (рис. 22). Так как вел (гл. 1. § 3), то Совершенно так же Таким образом,

Заметим, что, проектируя на координатные оси направленный отрезок, идущий из начала координат в произвольную точку плоскости, по формулам (14) получим:

Таким образом, координаты х, у точки М можно рассматривать как проекции направленного отрезка ОМ на оси координат

В дальнейшем нам понадобится формула, выражающая тангенс угла между осью Ох и направленным отрезком АВ через координаты его начала и конца. Эту формулу легко получить, используя приведенные выше выражения проекций отрезка АВ на оси координат.

Сравнивая между собой формулы (12) и (14), получим:

откуда

Формула (16) определяет тангенс угла между осью Ох и направленным отрезком АВ.

Если изменить направление отрезка на прямо противоположное, то угол между осью Ох и отрезком изменится на , по тангенс угла, очевидно, сохранит прежнее значение и будет, следовательно, определяться той же формулой (16)

Рис. 23.

1
Оглавление
email@scask.ru