§ 10. Взаимное расположение двух прямых на плоскости.
Если две прямые лежат на плоскости, то возможны три различных случая взаимного расположения их: 1) прямые пересекаются (т. е. имеют одну общую точку), 2) прямые параллельны и не совпадают, 3) прямые совпадают.
Выясним, как узнать, какой из этих случаев имеет место, если прямые заданы своими уравнениями
Если прямые пересекаются, т. е. имеют одну общую точку, то координаты этой точки должны удовлетворять обоим уравнениям (15). Следовательно, для нахождения координат точки пересечения прямых нужно решить совместно их уравнения. С этой целью исключим сначала неизвестное х, для чего умножим первое уравнение на , а второе на А, и вычтем первое из второго. Будем иметь:
Чтобы исключить из уравнений (15) неизвестное у, умножим первое из них на а второе на и вычтем второе из первого. Получим:
Если то из уравнений (15) и (15") получим решение системы (15):
Формулы (16) дают координаты х, у точки пересечения двух прямых.
Таким образом, если то прямые пересекаются. Если то формулы (16) не имеют смысла. Как в этом случае располагаются прямые? Легко видеть, что в этом случае прямые параллельны. Действительно, из условия следует, что (если же , то прямые параллельны оси Оу и, следовательно, параллельны между собой).
Итак, если то прямые параллельны. Рассматриваемое условие можно записать в виде можно сказать, что если в уравнениях прямых соответствующие коэффициенты при текущих координатах пропорциональны, то прямые параллельны.
В частности, параллельные прямые могут совпадать. Выясним, каков аналитический признак совпадения прямых. Для этого рассмотрим уравнения (15) и ). Если свободные члены этих уравнений будут оба равны нулю, т. е.
т. е. коэффициенты при неизвестных и свободные члены уравнений (15) пропорциональны. В таком случае одно из уравнений системы получается из другого умножением всех его членов на некоторый общий множитель, т. е. уравнения (15) равносильны. Следовательно, рассматриваемые параллельные прямые совпадают.
Если же хотя бы один из свободных членов уравнений (15) и ) будет отличен от нуля (или или
то уравнения (15) и (15"), а значит и уравнения (15), не будут иметь решений (по крайней мере одно из равенств (15) или (15") будет невозможным). В этом случае параллельные прямые не будут совпадать.
Итак, условием (необходимым и достаточным) совпадения двух прямых является пропорциональность соответствующих коэффициентов их уравнений:
Пример 1. Найти точку пересечения прямых линий
Решая уравнения совместно, умножим второе на 3:
Вычитая, получим: откуда Умножая первое уравнение на 3, второе на 2 и вычитая первое второго, получим: откуда координаты точки пересечения двух данных прямых суть:
Пример 2. Прямые линии
параллельны (они не имеют общей точки), так как
Прямые
совпадают, так как