Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 4. Прямоугольные координаты на плоскости.Дадим теперь понятие о методе координат на плоскости, т. е. укажем способ, позволяющий определять положение точек плоскости с помощью чисел.
Рис. 6. Возьмем две взаимно перпендикулярные прямые и на каждой из них установим положительное направление. Эти прямые, относительно которых мы будем определять положение точек плоскости, называются осями координат. Оси координат обычно располагают так, как это указано на рис. 6: одну — горизонтально и положительное направление на ней выбирают слева направо, а другую — вертикально и положительное направление на ней — снизу вверх. Одна из осей (обычно горизонтальная) называется осью абсцисс (ось Ох), а другая — осью ординат (ось Оу). Точка пересечения осей координат называется началом координат (на рис. 6 начало координат обозначено буквой О). Наконец, выберем единицу масштаба (мы всегда будем предполагать, что на обеих осях координат выбрана одна и та же единица масштаба). Теперь положение любой точки плоскости можно будет определить числами — координатами этой точки. Действительно, всякой точке М плоскости соответствуют на осях координат две точки Р и Q, являющиеся ее проекциями на эти оси (рис. 6) и, обратно, зная точки Но мы уже знаем, что положение точки на оси вполне определяется Таким образом, абсциссой точки называется величина направленного отрезка оси Ох, началом которого является начало координат, а концом — проекция точки на эту ось; ординатой точки называется величина направленного отрезка оси Оу, началом которого является начало координат, а концом — проекция точки на ось ординат. Итак, положение любой точки плоскости вполне определяется заданием пары чисел х и у, первое из которых является абсциссой точки, а второе — ее ординатой. Координаты точки условимся писать в скобках, рядом с буквой, обозначающей эту точку, ставя на первом месте абсциссу, а на втором — ординату и разделяя их запятой: Оси координат делят плоскость на четыре части, называемые четвертями или квадрантами (иногда их также называют координатными углами). Часть плоскости, заключенная между положительными полуосями Ох и Оу, называется первым квадрантом. Дальше нумерация квадрантов идет против часовой стрелки (рис. 7). Для всех точек 1 квадранта
Рис. 7. Координаты, которые принимаются здесь для определения положения точки плоскости, называются прямоугольными координатами, так как точка М плоскости получается пересечением двух прямых РМ и QM (рис. 6), встречающихся под прямым углом, а также декартовыми по имени математика и философа Декарта, который в 1637 году опубликовал первый труд по аналитической геометрии. Декартова прямоугольная система координат не является единственной координатной системой, позволяющей определять положения точек плоскости (см. § 11 этой главы), но она является наиболее простой и мы в дальнейшем будем пользоваться преимущественно ею. Из описанного метода координат вытекает решение двух основных задач. Задача I. По данной точке М найти ее координаты. Из данной точки М опускаем перпендикуляры на оси Задача И. Зная координаты Отложим по оси Ох от точки О отрезок длиною Замечание. Если мы условимся рассматривать направленные отрезки РМ и QM (рис. 6) как отрезки осей, направления которых совпадают с направлениями параллельных им координатных осей, то абсцисса точки М будет выражаться не только величиной отрезка ОР, но и равной ей величиной отрезка QM. Ордината той же точки будет одинаково выражаться как величиной отрезка OQ, так и равной ей величиной отрезка РМ. Направленные отрезки OP, QM, OQ и РМ будем называть координатными отрезками точки М. Тогда при решении рассмотренных двух основных задач нет необходимости определять обе проекции точки М, достаточно определить только одну, например проекцию на ось абсцисс. Так, в задаче 1 опускаем из данной точки М перпендикуляр на ось абсцисс. Его основание Р определяет проекцию точки М на эту ось. Величина направленного отрезка ОР даст абсциссу Пример. Построить точку по координатам Таким образом, в выбранной системе координат каждой точке плоскости соответствует вполне определенная пара координат х и у и, обратно, всякая пара действительных чисел х, у определяет на плоскости единственную точку, абсцисса которой равна х, а ордината у. Поэтому задать точку, это значит задать ее координаты; найти точку, значит найти ее координаты.
|
1 |
Оглавление
|