Главная > Стереометрия. Геометрия в пространстве
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.8. Перпендикулярность плоскостей.

Напомним, что плоскости называются перпендикулярными, если угол между ними прямой. А угол этот определяется так. Берут точку О на прямой С, по которой пересекаются плоскости , и проводят через нее в плоскостях прямые (рис. 1.9а). Углом между а и b и измеряется угол между . Когда этот угол прямой, то говорят, что плоскости взаимно перпендикулярны и пишут

Вы, конечно, уже заметили, что когда , то из трех прямых а, b, с любые две взаимно перпендикулярны (рис. 2.28). В частности, . Поэтому (по признаку перпендикулярности прямой и плоскости). Аналогично,

Итак, каждая из двух взаимно перпендикулярных плоскостей содержит перпендикуляр к другой плоскости. Более того, эти перпендикуляры заполняют взаимно перпендикулярные плоскости. (рис. 2.29).

Докажем последнее утверждение. Действительно, если через любую точку плоскости а провести прямую

Рис. 2.28

Рис. 2.29

, то (по теореме 5 о параллельности перпендикуляров).

А для признака перпендикулярности плоскостей достаточно одного перпендикуляра к плоскости.

Теорема 7. (признак перпендикулярности плоскостей). Если плоскость проходит через перпендикуляр к другой плоскости, то эти плоскости взаимно перпендикулярны.

Пусть плоскость а содержит прямую а, перпендикулярную плоскости Р (рис. 2.28). Тогда прямая а пересекает плоскость Р в точке О. Точка О лежит на прямой С, по которой пересекаются . Проведем в плоскости Р через точку О прямую . Так как и b лежит в плоскости Р, то Следовательно,

Данный признак имеет простой практический смысл: плоскость двери, навешенной на перпендикулярный полу косяк, перпендикулярна плоскости пола при любых положениях двери (рис. 2.1). Другое практическое применение этого признака: когда требуется проверить, вертикально ли установлена плоская поверхность (стена, забор и т. п.), то это делают с помощью отвеса — веревки с грузом. Отвес всегда направлен вертикально, и стена стоит вертикально, если в любом ее месте отвес, располагаясь вдоль нее, не отклоняется.

При решении задач, в которых встречаются перпендикулярные плоскости, часто используются следующие три предложения.

Предложение 1. Прямая, лежащая в одной из двух взаимно перпендикулярных плоскостей и перпендикулярная их общей прямой, перпендикулярна другой плоскости.

Пусть плоскости взаимно перпендикулярны и пересекаются по прямой С. Пусть, далее, прямая а лежит в плоскости а и (рис. 2.28). Прямая а пересекает прямую С в некоторой точке О. Проведем через точку О в плоскости Р прямую b, перпендикулярную прямой с. Так как то . Поскольку , то (по теореме 2).

Второе предложение обратно первому.

Предложение 2. Прямая, имеющая общую точку с одной из двух взаимно перпендикулярных плоскостей и перпендикулярная другой плоскости, лежит в первой из них.

Рис. 2.30

Пусть плоскости взаимно перпендикулярны, прямая а также прямая а имеет с плоскостью а общую точку А (рис. 2.30). Через точку А в плоскости а проведем прямую перпендикулярную прямой С — линии пересечения плоскостей . Согласно предложению Поскольку в пространстве через каждую точку проходит лишь одна прямая, перпендикулярная данной плоскости, то прямые а и совпадают. Так как лежит в плоскости а, то и а лежит в плоскости

Предложение 3. Если две плоскости, перпендикулярные третьей плоскости, пересекаются, то прямая их пересечения перпендикулярна третьей плоскости.

Рис.

Пусть две плоскости , пересекающиеся по прямой а, перпендикулярны плоскости у (рис. 2.31). Тогда через любую точку прямой а проведем прямую, перпендикулярную плоскости у. Согласно предложению 2, эта прямая лежит и в плоскости а, и в плоскости Р, т. е. совпадает с прямой а. Итак,

1
Оглавление
email@scask.ru