Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
12.4. Симметрия правильных многогранников.
В п. 12.1 мы определили правильный многогранник как многогранник, у которого равны друг другу все элементы одного вида: грани, ребра и т.д. Но правильные многогранники можно определить как самые симметричные изо всех многогранников. Это означает следующее. Если мы возьмем на правильном многограннике некоторую вершину А, подходящее к ней ребро а и грань а, подходящую к этому ребру, и еще любой такой же набор то существует такое самосовмещение многогранника,
Рис. 12.16
которое вершину А переводит в вершину А, ребро а — в ребро а, грань а — в грань а.
Докажем это. Так как любые две грани правильного многогранника равны, то существует движение, которое одну из них переведет в другую. Поскольку все двугранные углы этого многогранника равны, то в результате совмещения граней весь многогранник самосовместится или перейдет в многогранник, симметричный исходному относительно плоскости второй грани. Во втором случае симметрия относительно плоскости этой грани завершит процесс самосовмещения правильного многогранника.
Рис. 12.17
Верно и обратное: многогранники, обладающие этим свойством, будут правильными, так как у них окажутся равны все ребра, все плоские углы и все двугранные углы.
Рассмотрим теперь элементы симметрии правильных многогранников.
Начнем с элементов симметрии куба.
Рис. 12.18
1. Центр симметрии — центр куба.
2. Плоскости симметрии (рис. 12.17): 1) три плоскости симметрии, перпендикулярные ребрам в их серединах; 2) шесть плоскостей симметрии, проходящих через противоположные ребра.
3. Оси симметрии: 1) три оси симметрии 4-го порядка, проходящие через центры противоположных граней (рис. 12.18а); 2) шесть осей поворотной симметрии 2-го порядка, проходящие через середины противоположных ребер (рис. 12.186); 4) четыре диагонали куба являются осями зеркального поворота шестого порядка, самосовмещающего куб (рис. 12.18в).
Это самый интересный и не сразу видный элемент симметрии куба. Сечение куба плоскостью, проходящей через его центр перпендикулярно диагонали, представляет правильный шестиугольник; при повороте куба вокруг диагонали на угол 60° шестиугольник отображается на себя, а куб в целом еще нужно отразить в плоскости шестиугольника.
Рис. 12.19
Октаэдр двойственен кубу, и потому у него те же элементы симметрии с той разницей, что плоскости симметрии и оси, проходящие у куба через вершины и центры граней, у октаэдра проходят наоборот: через центры граней и вершины (рис. 12.19). Так, зеркальная ось 6-го
Рис. 12.20
порядка проходит у октаэдра через центры противоположных граней.
Обратимся к элементам симметрии правильного тетраэдра.
1. Шесть плоскостей симметрии, каждая из которых проходит через ребро и середину противоположного ребра (рис. 12.20а).
2. Четыре оси 3-го порядка, проходящие через вершины и центры противоположных им граней, т.е. через высоты тетраэдра (рис. 12.20б).
3. Три оси зеркального поворота 4-го порядка, проходящие через середины противоположных ребер (рис. 12.20в).
Центра симметрии у тетраэдра нет.
В куб можно вписать два правильных тетраэдра (рис. 12.16). При самосовмещениях куба эти тетраэдры либо самосовмещаются, либо отображаются друг на друга. Выясните, при каких самосовмещениях куба происходит самосовмещение тетраэдров, а при каких они отображаются друг на друга.
Убедитесь, что в первом случае получатся все самосовмещения тетраэдра, так что группа симметрии куба включает в себя группу симметрии куба как подгруппу. (См. п. 28.4).
Группы симметрии у додекаэдра и икосаэдра одинаковы, поскольку эти правильные многогранники двойственны
Рис. 12.21
Рис. 12.22
друг другу. У них есть центр симметрии, плоскости симметрии, оси поворотной симметрии и оси зеркальной поворотной симметрии. Труднее всего найти последние из этих элементов симметрии. Укажем, как их построить.
Оси зеркальной поворотной симметрии в икосаэдре (так же, как и в кубе) соединяют противоположные вершины этого многогранника (рис. 12.21), а в додекаэдре (как и в октаэдре) эти оси идут через центры их параллельных граней (рис. 12.22). Плоскости, проходящие через центры симметрии правильных многогранников и перпендикулярные указанным осям, пересекают правильные многогранники по правильным многоугольникам (рис. 12.23).
Рис. 12.23
В частности, додекаэдр и икосаэдр они пересекают по правильным десятиугольникам (рис. 12.23 г,д). Из сказанного следует, что икосаэдр и додекаэдр самосовмещаются зеркальными поворотами относительно осей шестого и десятого порядков.
Найдите самостоятельно более простые элементы симметрии икосаэдра и додекаэдра — плоскости симметрии и оси поворотной симметрии.