Главная > Методы вычислений, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2. Понятие об операторном методе вывода формул интерполирования.

Дадим теперь операторные выводы интерполяционных формул.

Рассмотрим линейное множество всех действительных функций, заданных на всей действительной прямой. Поставим в соответствие произвольной функции функцию

где фиксированное действительное число. Эта функция также принадлежит Следовательно, в соответствии с определением, данным во Введении, мы ввели некоторый оператор. Обозначим его через Итак,

В дальнейшем мы часто будем опускать скобки, выделяющие аргументы операторов. Нами будут также использованы операторы V и , которые вводятся следующим образом:

Оператор А, определенный на линейном множестве называется аддитивным, если для произвольных и любых действительных чисел имеет место равенство

Нетрудно проверить, что введенные нами операторы и 5 являются аддитивными.

Введем понятие суммы и произведения операторов. Оператор С называется суммой операторов если все эти операторы определены на одном и том же линейном множестве и для любого имеет место равенство

Эту связь операторов мы будем обозначать так:

В силу коммутативности сложения в линейном множестве имеет место

Если оператор В преобразует любой элемент х линейного множества в элемент с где с — действительное число и А — некоторый оператор, то мы будем обозначать его через Далее, будем называть оператор С произведением операторов если для любого элемента х некоторого множества имеет место

Очевидно,

Если линейное множество, то имеют место также равенства

Вообще говоря, Будем обозначать через I оператор, для которого при любом имеет место Назовем такой оператор единичным. Теперь мы можем определить Для степеней оператора имеет место равенство

По определению, положим Теперь мы можем рассматривать многочлены от операторов

Если в линейном пространстве каким-то образом введено понятие предела, то мы можем рассматривать и ряды операторов

понимая под этим такой оператор В, что

Оператор В может быть вообще не определен или определен только на части пространства

Перейдем теперь к выводу интерполяционных формул. В дополнение к введенным ранее операторам и 8 рассмотрим еще оператор Если функция разлагается в бесконечный степенной ряд, то

В частности,

Итак,

и

Отсюда

В частности, если то все наши ряды превращаются в конечные суммы и произведенные нами операции являются

законными. Раскрывая последнее выражение, мы получим интерполяционную формулу Ньютона для интерполирования вперед:

Для получения интерполяционной формулы Ньютона для интерполирования назад заметим, что

Отсюда

и, кроме того,

Итак,

или

Это — интерполяционная формуля Ньютона для интерполирования назад, но записанная в других обозначениях.

Связь оператора с оператором значительно сложнее. Мы имеем:

и

или

Отсюда

т. е. является решением квадратного уравнения

Мы не будем входить в детали дальнейших рассуждений для получения формул центральных разностей

1
Оглавление
email@scask.ru