Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 14. Применение интерполирования для составления таблицТеория интерполирования имеет большие приложения при составлении таблиц функций. Получив задание на составление таблиц тех или иных функций, математик должен решить перед началом вычислений ряд вопросов. Должна быть выбрана формула, по которой будут производиться вычисления. Эта формула может изменятся от участка к участку. Обычно формулы для вычисления значений функции, использующие способ задания функции, бывают громоздкими и поэтому их используют для получения некоторых опорных значений и затем путем субтабулирования сгущают таблицу. Формула, дающая опорные значения функции, должна обеспечивать нужную точность таблиц с учетом последующего субтабулирования. Если предполагается составить таблицы с постоянным шагом, то должен быть определен шаг таблицы. Шаг таблицы связан с двумя факторами: объемом таблиц и интерполяционной формулой, по которой будут вычисляться промежуточные значения уже в готовой таблице. Чем больше будет шаг, тем больше членов интерполяционной формулы придется использовать при пользовании этой таблицей на практике. Это создает некоторые неудобства при использовании таблицы. С другой стороны, чем меньше шаг, тем больше объем таблиц, что также не очень удобно. Математик должен как-то согласовать действие этих противоположных факторов с учетом средств вычислений, имеющихся в распоряжении потребителя. Если таблица должна быть введена в быстродействующую машину, то особенно важно уменьшить ее объем. При этом можно отказаться от постоянства шага и использовать, например, узлы Чебышева на отдельных участках, для которых, как мы видели, получается наилучшая оценка остаточного члена интерполяционной формулы. При определении шага таблицы будут иметь значение и такие факторы, как наличие вычислительных средств и время, отведенное на вычисления. Мы не можем здесь входить в детали каждого из поставленных вопросов и остановимся лишь на выборе шага и субтабулировании, Чаще всего таблицы функций составляются так, чтобы была допустима линейная интерполяция (т. е. интерполяция с использованием первых двух членов формулы). В этом случае остаточный член будет иметь вид
Здесь 5 принадлежит интервалу между двумя соседними табличными значениями аргумента, в котором лежит
Чтобы ошибка интерполирования не превышала по абсолютной величине а, необходимо выбирать
Нужно помнить, что наряду с этой ошибкой — ошибкой метода, при практическом вычислении промежуточных значений будут возникать еще неустранимая погрешность и погрешность округлений. Как мы видели ранее, неустранимая погрешность при линейной интерполяции будет равна погрешности табулированных значений функций. Погрешность округления будет зависеть от вычислительных средств и от программы вычислений. Поэтому здесь мы ее касаться не будем. Совершенно аналогично можно исследовать квадратичную интерполяцию и интерполяцию более высоких порядков. Если, например, используется интерполяционная формула Эверетта, то остаточный член будет иметь вид
и в этом случае наибольшее значение для
будет достигаться при
и для того чтобы ошибка квадратичной интерполяции не превышала а, нужно, чтобы шаг И здесь, кроме этой ошибки метода, возникают неустранимая ошибка и ошибка округления. Неустранимая ошибка будет такова же, как и для формулы Гаусса, взятой до третьих разностей. Как видно из приведенной ранее таблицы, неустранимая погрешность не может больше чем в 1,4 раза превысить абсолютные погрешности табулированных значений. Аналогично можно исследовать и другие формулы. Рассмотрим теперь вопрос о субтабулировании. Как применяется формула Эверетта для субтабулирования, мы уже знаем. Приведем здесь еще один способ субтабулирования. Пусть Здесь
Обозначим через
Таким образом, операторы
Следовательно, степени их будут связаны таким соотношением:
Отсюда последовательно получаем:
После того как получены разности, нетрудно, используя постоянство разностей пятого порядка, произвести субтабулирование. Сначала заполняем столбец пятых разностей, затем четвертых и т. д., пока не придем к значениям функции. Эти формулы, связывающие (см. скан) В нашем случае
Будем обозначать разности с новым шагом чертой сверху. Первые разности будут выражаться так через предыдущие разности:
Вторые разности будут иметь вид:
Третьи разности будут равны:
Подставляя сюда числовые значения, получим:
Далее вычисления проводим так же, как в § 6, где мы продолжали таблицу многочлена. Сначала заполняем столбец третьих разностей, затем вторых, первых и, наконец, столбец значений функции. В узловых точках записываем данные нам значения. Расхождения могут произойти за счет округлений. Таблица выглядит так (см. скан) Расхождения с точными значениями не превышают двух единиц, шестого знака, да и то в конце таблицы.
|
1 |
Оглавление
|