Главная > Методы вычислений, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. Некоторые другие вариационные методы.

Кроме метода Ритца существует ряд других приближенных методов решения вариационных задач, соответствующих краевым задачам. Не останавливаясь на них подробно, кратко изложим сущность некоторых из них на примере задачи Дирихле для уравнения (44).

Метод Л. В. Канторовича. Для простоты предположим, что область в которой ищется решение уравнения (44) с краевыми условиями (45), ограничена прямыми и двумя кривыми Как мы видели, решение задачи сводится к решению задачи о минимуме функционала

на множестве дважды непрерывно дифференцируемых функций, обращающихся в нуль на границе. В методе Канторовича приближенное решение ищется в виде

Где заданные дважды непрерывно дифференцируемые функции, обращающиеся в нуль на границе за исключением, быть может, прямых неизвестные функции.

Подставляя в и выполняя интегрирование по переменному у, получим:

где известная функция своих аргументов. Для отыскания имеем вариационную задачу о минимуме однократного интеграла. Выписывая систему уравнений Эйлера

и присоединяя краевые условия

получим краевую задачу для системы линейных дифференциальных уравнений второго порядка, решая которую, найдем а следовательно и .

Можно показать, что в нашем случае система имеет вид

В качестве функций можно брать, например, функции

или

При некоторых ограничениях на гладкость решения можно показать, что последовательность в которой имеют вид (72) или (73), равномерно сходится к решению краевой задачи (см. Л. В. Канторовичи В. И. Крылов, Приближенные методы высшего анализа, гл. 4, ГИТТЛ, 1952).

Метод Куранта. Если в уравнении (44) правая часть имеет непрерывные производные до некоторого порядка Курант предложил вместо функционала рассматривать функционал

Очевидно а для функции и, реализующей минимум функционала на множестве имеет место равенство так как Таким образом, решение краевой задачи (44) — (45) реализует минимум и функционала (74). Если мы построим минимизирующую последовательность функционала то, очевидно, при

Это позволяет получить дополнительные заключения о характере сходимости к . Например, если решается задача Дирихле для уравнения Пуассона то

Построим минимизирующую последовательность будем иметь:

По формуле Грина

Отсюда по неравенству Буняковского

Первый множитель в правой части ограничен некоторой постоянной С, а это означает при учете (75), что равномерно сходится

Метод Треффтца. В методе Ритца приближенное решение ищется в классе функций, удовлетворяющих краевым условиям, но не удовлетворяющих дифференциальному уравнению. В противоположность этому в методе Треффтца приближенное решение ищется в классе функций, удовлетворяющих уравнению, но не удовлетворяющих краевому условию.

Пусть снова рассматривается краевая задача (44) — (45). Обозначим через решение уравнения (44) и пусть линейно независимые решения соответствующего однородного уравнения, т. е.

Тогда линейная комбинация

будет снова решением уравнения (44): Требуется так подобрать коэффициенты чтобы функция в каком-то смысле наиболее точно удовлетворяла граничным условиям (45). Например, можно подобрать так, чтобы интеграл

принимал бы наименьшее значение. В этом случае для отыскания мы получили бы систему линейных алгебраических уравнений

В методе Треффтца от требуется, чтобы разность и точного решения задачи и обращала в минимум функционал

т. е. подбирают так, чтобы обращалась в минимум функция

Следовательно, должны являться решением системы

Интеграл в (83) можно преобразовать так, чтобы неизвестное нам решение и не входило. В самом деле, используя формулу Остроградского, интеграл в левой части (83) можно преобразовать так:

Так как то систему (83) можно переписать в виде

В эту систему уже не входит. Решая ее, находим а следовательно и .

Отметим, что если — приближенное решение краевой задачи, полученное по методу Треффтца, а — точное решение, то имеет место неравенство

т. е. метод Треффтца дает приближение к снизу.

1
Оглавление
email@scask.ru