Главная > Работы по теории информации и кибернетики (1963)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7. Чистые и смешанные шифры

Некоторые типы шифров, такие, как простая подстановка, транспозиция с данным периодом, система Виженера с данным периодом, система Виженера со смешанным алфавитом и т. д. (все с равновероятными ключами) обладают некоторой однородностью по отношению к ключу. Каков бы ни был ключ, процессы шифрования, дешифрирования адресатом и дешифрирования противником являются по существу теми же самыми. Эти системы можно противопоставить системе с шифром

где — простая подстановка, транспозиция с данным периодом. В таком случае процессы шифрования и дешифрирования адресатом или противником полностью меняются в зависимости от того, используется подстановка или транспозиция.

Причина однородности таких систем лежит в групповом свойстве: заметим, что в приведенных выше примерах однородных шифров произведение любых двух отображений из множества равно третьему отображению из этого же множества. С другой стороны, не равно какому-нибудь отображению для шифра

который содержит только подстановки и транспозиции, но не их произведения.

Было бы можно, таким образом, определить «чистый» шифр как шифр, в котором образуют группу. Однако это было бы слишком сильным ограничением, так как тогда потребовалось бы, чтобы пространство Е совпадало с пространством М, т. е. чтобы система была эндоморфной.

Рис. 4. Чистая система.

Дробная транспозиция так же однородна, как и обычная транспозиция, но она не эндоморфна. Подходящим является следующее определение: шифр Т является чистым, если для каждых имеется такое что

и все ключи равновероятны. В противном случае шифр является смешанным. Шифры на рис. 2 являются смешанными, а на рис. 4 — чистыми, если только все ключи равновероятны.

Теорема 1, В чистом шифре операции отображающие пространство сообщений в себя, образуют группу, порядок которой равен числу различных ключей.

Так как

то каждый элемент имеет обратный. Ассоциативный закон верен, так как это операции, а групповое свойство следует из того, что

где предполагалось, что для некоторого .

Операция означает шифрование сообщения с помощью ключа с последующим дешифрованием с помощью ключа что приводит нас назад к пространству сообщений. Если система Т эндоморфна, т. е. отображают пространство в само себя (что имеет место для большинства шифров, в которых и пространство сообщений и пространство криптограмм состоит из последовательностей букв), и если образуют группу и равновероятны, то Г — чистый шифр, так как

Теорема 2. Произведение двух чистых коммутирующих шифров является чистым шифром.

Если Т и коммутируют, то для любых при соответствующих . Тогда

Условие коммутирования не является, однако, необходимым для того, чтобы произведение было чистым шифром.

Система, состоящая из одного ключа, т. е. из единственной определенной операции является чистым шифром, т. е. при единственном возможном выборе индексов имеем

Таким образом, разложение шифра в сумму таких простых отображений представляет собой разложение в его сумму чистых шифров.

Исследование примера, приведенного на рис. 4, вскрывает некоторые свойства чистого шифра. Сообщения распадаются на определенные подмножества, которые мы будем называть остаточными классами, и возможные криптограммы также распадаются на соответствующие им остаточные классы. От каждого сообщения в любом

классе к каждой криптограмме в соответствующем классе имеется не менее одной линии и нет линий между несоответствующими классами. Число сообщений в классе является делителем полного числа ключей. Число «параллельных» линий от сообщения М к криптограмме в соответствующем классе равно числу ключей, деленному на число сообщений в классе, содержащем это сообщение (или криптограмму).

В приложении показывается, что это верно для чистых шифров и в общем случае. Резюмируя сказанное, мы имеем

Теорема 3. В чистой системе сообщения можно разделить на множество «остаточных классов» а криптограммы на соответствующее множество остаточных классов Эти классы будут иметь следующие свойства:

1. Остаточные классы сообщений взаимно исключают друг друга и содержат все возможные сообщения. Аналогичное утверждение верно и для остаточных классов криптограмм.

2. Если зашифровать любое сообщение из класса с помощью любого ключа, то получится криптограмма из класса Дешифрирование любой криптограммы из класса с помощью любого ключа приводит к сообщению из класса

3. Число сообщений в классе скажем равно числу криптограмм в классе и является делителем — числа ключей.

4. Каждое сообщение из класса может быть зашифровано в каждую криптограмму из класса при помощи точно различных ключей. То же самое верно и для дешифрирования.

Смысл понятия чистый шифр (и причина для выбора такого термина) лежит в том, что в чистом шифре все ключи являются по существу одинаковыми. Какой бы ключ ни использовался для заданного сообщения, апостериорные вероятности всех сообщений будут теми же самыми. Чтобы показать это, заметим, что два различных ключа, примененных к одному сообщению, дадут в результате две криптограммы из одного остаточного класса, скажем Поэтому эти две криптограммы могут быть расшифрованы с помощью ключей в каждое из сообщений в классе и больше ни в какие возможные сообщения. Так как все ключи равновероятны,

то апостериорные вероятности различных сообщений равны

где М — сообщение из класса — криптограмма из класса С и сумма берется по всем М из класса Если Е и М не принадлежат соответствующим остаточным классам, то

Аналогично можно показать, что набор апостериорных вероятностей различных ключей всегда одинаков, но эти вероятности ставятся в соответствие ключам лишь после того, как уже использован некоторый ключ. При изменении частного ключа это множество чисел подвергается перестановке. Иными словами, имеем:

Теорема 4. В чистой системе апостериорные вероятности различных сообщений не зависят от выбора ключа. Апостериорные вероятности ключей образуют один и тот же набор величин, но подвергаются перестановке в результате различных выборов ключа.

Грубо говоря, можно считать, что любой выбор ключа в чистом шифре приводит к одинаковым трудностям при дешифрировании. Поскольку различные ключи все приводят к формированию криптограмм из одного и того же остаточного класса, то все криптограммы из одного остаточного класса эквивалентны с точки зрения сложности дешифрирования — они приводят к тем же самым апостериорным вероятностям сообщений и, если учитывать перестановки, к тем же самым вероятностям ключей.

В качестве примера чистого шифра может служить простая подстановка с равновероятными ключами. Остаточный класс, соответствующий данной криптограмме Е, является множеством всех криптограмм, которые могут быть получены из с помощью операций . В рассматриваемом случае операция сама является подстановкой и поэтому любая подстановка переводит криптограмму Е в другой член того же самого остаточного класса; таким образом, если криптограмма представляет собой

то

и т. д. принадлежат к тому же остаточному классу. В этом случае очевидно, что криптограммы по существу эквивалентны. Все существенное в простой подстановке со случайным ключом заключено в характере повторения букв, в то время как сами буквы являются несущественной маскировкой. В действительности можно бы полностью обойтись без них, указав характер повторений букв в Е следующим образом:

Это обозначение описывает остаточный класс, но устраняет всю информацию относительно конкретных членов этого класса; таким образом, оно представляет как раз ту информацию, которая имеет значение для шифровальщика противника. Это связано с одним из методов подхода к раскрытию шифров типа простой подстановки — методом характернйх слов.

В шифре типа Цезаря имеют значение только первые разности криптограммы по модулю 26. Две криптограммы с теми же самыми разностями принадлежат к одному остаточному классу. Этот шифр можно раскрыть путем простого процесса выписывания двадцати шести сообщений из этого остаточного класса и выбора того из них, которое имеет смысл.

Шифр Виженера с периодом со случайным ключом представляет собой другой пример чистого шифра. Здесь остаточный класс сообщений состоит из всех последовательностей с теми же первыми разностями, что и у криптограммы для букв, отстоящих на расстояние Для остаточный класс определяется с помощью равенств

где — криптограмма, является любым сообщением в соответствующем остаточном классе.

В транспозиции с периодом со случайным ключом остаточный класс состоит из всех способов расстановок символов криптограммы, в которых никакое не выдвигается из своего блока длины и любые два с расстоянием остаются на таком же расстоянии. Это используется для раскрытия шифра следующим образом: криптограмма записывается в виде последовательных блоков длины

один под другим, как показано ниже

Затем столбцы переставляются до тех пор, пока не получится осмысленный текст. После того как криптограмма разбита на столбцы, оставшейся существенной информацией является только остаточный класс криптограммы.

Теорема 5. Если шифр Т — чистый, то где — любые два отображения из Т. Обратно, если это выполняется для любых принадлежащих шифру то шифр Т является чистым.

Первая часть этой теоремы следует, очевидно, из определения чистого шифра. Чтобы доказать вторую часть, заметим сначала, что если то является отображением из Т. Остается показать, что все ключи равновероятны. Имеем

Слагаемое в стоящей слева сумме с дает Единственным слагаемым с Т; в правой части является Так как все коэффициенты неотрицательны, то отсюда следует, что

То же самое рассуждение остается справедливым, если и поменять местами. Следовательно,

и Т — чистый шифр. Таким образом, условие можно было бы использовать в качестве другого определения чистого шифра.

1
Оглавление
email@scask.ru