Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике Покажем, как оценить скорость диффузии Арнольда на примере системы, описываемой отображением (6.1.12). Мы рассмотрим три различных режима диффузии с последовательно уменьшающейся скоростью. Первый режим соответствует диффузии по $\alpha$ вдоль толстого стохастического слоя в плоскости ( $\beta, y$ ). Диффузия происходит вследствие связи со случайным движением по $y$. Второй режим аналогичен первому, за исключением того, что диффузия по $\alpha$ идет вдоль тонкого стохастического слоя $y$-резонанса. Наконец, третий режим отвечает диффузии вдоль резонанса связи. Найдем прежде всего гамильтониан для отображения (6.1.12). Қак и в п. 3.1в, преобразуем разностные уравнения (6.1.12) в дифференциальные с помощью $\delta$-функции. В результате получаем неавтономный гамильтониан с двумя степенями свободы: где Диффузия в толстом слое. Выберем начальные значения $\beta$ и $у$ внутри толстого стохастического слоя, а $\alpha$ и $x$ вблизи центра целого резонанса. При отсутствии связи между степенями свободы ( $\mu=0$ ) движение в плоскости ( $\alpha, x$ ) происходит по инвариантной кривой (рис. 6.5). При включении связи происходит медленная диффузия по $\alpha$ и $x$. Перейдем к новым переменным $\theta=k_{x} x, \varphi=k_{y} y, \bar{\alpha}=\alpha / k_{x}$, $\bar{\beta}=\beta / k_{y}$ и представим гамильтониан $H$ в виде суммы $H=H_{x}+H_{y}$, где Здесь для удобства мы сохранили старые переменные $\alpha$ и $\beta$ в новом гамильтониане. В (6.2.6б) использовано приближение – In $\cos \alpha \approx \alpha^{2} / 2$ при $\alpha^{2} \ll 1, \delta_{1} \approx 1$ при $\omega_{x}^{2}=4 a h k^{2} \ll 1$, а $\varphi$ считается явной функцией $n$. Последнее допущение наиболее серьезно, поскольку при этом пренебрегается влиянием связи на движение по $y$. В результате мы получили два неавтономных гамильтониана с одной степенью свободз каждый ${ }^{1}$ ). Теперь можно решить уравнение движения независимой подсистемы (6.2.6a) и найти «стохастическую накачку» $\varphi(n)$. Подставив ее в (6.2.6б), найдем движение в плоскости ( $\alpha, \theta$ ), которое и дает диффузию Арнольда. В толстом слое, где имеется много перекрывающихся резонансов, фаза $\varphi$ хаотизуется за время порядка одной итерации отображения ${ }^{2}$ ). Поэтому с хорошей точностью можно считать, что после- довательныезначения фазы ч являются случайными и независимыми, причем переход между ними имеет характер «скачка». Изменение $H_{x}$ определяется уравнением Гамильтона Используя (6.2.6б), можно записать производную в виде Первый член в выражении справа описывает малые ограниченные колебания. Считая колебания по $\theta$ малыми где $\omega_{x}=2 \pi / T=2 k_{x}\left(a_{x} h\right)^{1 / 2}$, проинтегрируем второй член в уравнении (6.2.7) по периоду отображения: При $\omega_{x} \ll 1$ подынтегральное выражение постоянно, поэтому Возводя это выражение в квадрат и усредняя как по $\chi_{0}$, так и по $\varphi$, получаем ${ }^{\mathbf{1}}$ ) В результате находим скорость диффузии в толстом слое С изменением $H_{x}$ в процессе диффузии параметры $\mu$ и $\omega_{x}$ остаются постоянными. Величина же $\theta_{0}$ растет с $H_{x}$, а вместе с ней и скорость диффузии: На рис. $6.8, a-в$ теоретические значения $D_{1}$ (сплошные линии) сравниваются с результатами численного моделирования. Начальные условия для 100 траекторий были одинаковыми в плоскости $(\alpha, x)$ и случайными в пределах толстого слоя плоскости $(\beta, y)$. Для каждой траектории просчитывалось 500 итераций отображения. Вычислялись среднеквадратичные значения безразмерной энергии $\left\langle\alpha^{2}\right\rangle=\left[h^{-2}\left\langle\left(\Delta H_{x}\right)^{2}\right\rangle n\right]^{-1 / 2}$, которые и сравнивались с теорией. На рис. 6.8 каждый треугольник представляет результат усреднения четырех независимых (по начальным условиям) вариантов счета. Согласие с теорией достаточно хорошее, хотя она и несколько завышает систематически скорость диффузии. Это разэичие объясняется, возможно, тем, что значения фазы $\varphi(m)$ не полностью независимы. Рис. 6.8. Диффузия в толстом слое (по данным работы [406]). Диффузия в тонком слое. В этом случае начальные условия на плоскости $(\alpha, x)$ мы выбираем, как и в толстом слое, вблизи центра резонанса, а в плоскости $(\beta, y)$ – в тонком стохастическом слое резонанса. Как и в толстом слое, диффузия в плоскости $(\alpha, x)$ обусловлена слабой связью со стохастическим движением в плоскости $(\beta, y)$. Однако скорость диффузии оказывается значительно меньше. Действуя прежним методом, мы оставим теперь, однако, в функции $\delta_{1}(n)$ в (6.2.6a) только члены с $q=0$ и $q=1$ из разложения (6.2.5) [ср. (4.1.26) ]. Используя, кроме того, приближение $-\ln \cos \beta \approx \beta^{2} / 2, \beta^{2} \sim a_{y} / h \ll 1$, запишем гамильтониан (6.2.6а) в виде Здесь первые два члена определяют сепаратрису резонанса в плоскости $(\beta, y)$, а третий приводит к образованию тонкого стохастического слоя в ее окрестности. Чтобы найти функцию $\varphi(n)$ для (6.2.11), будем исходить из уравнения (6.2.7), пренебрегая первым членом в его правой части: где $\theta(n)$ определяется соотношением (6.2.8). Примем, далее, что на одном полупериоде фазовых колебаний $\varphi(n)$ определяется движением по невозмущенной сепаратрисе (см. п. 1.3а) ${ }^{1}$ ): Обозначив $s=\omega_{y} n, Q_{0}=\omega_{x} / \omega_{y}$ и записав фазу $\chi_{0}$ в (6.2.8) как $\chi_{0}=Q_{0} s_{0}-\pi / 2$, получим из (6.2.12) где При $\theta_{0} \ll 1$ и мы приходим к интегралу Мельникова-Арнольда (п. 3.5а): который понимается в смысле его среднего значения по $s_{1}$ при $s_{1} \rightarrow \infty$. В рассматриваемом случае $m=2$, и мы получаем где, согласно (3.5.18), В результате находим Из свойств сепаратрисного отображения (п. 3.5б) мы знаем, что величина $Q_{0} S_{0}$ хаотизуется на полупериоде фазовых колебаний $T_{l j}$. Усредняя по фазе $Q_{0} s_{0}$, получаем где На рис. 6.9 приведен график функции $F\left(Q_{0}\right)$ с максимумом при $Q_{0} \approx 1,3$ и довольно резким падением в обе стороны от максимума ${ }^{1}$ ). Так, например, при изменении $Q_{0}$ в 4 раза скорость диффузии уменьшается на два порядка по сравнению с максимальной. Для вычисления коэффициента диффузии необходимо найти средний полупериод $\left\langle T_{y}\right\rangle$ колебаний в тонком стохастическом слое. Вблизи сепаратрисы где $w=\left(H_{y}-H_{s}\right) / H_{s} \ll 1$, а $H_{s}=2 a_{y}$ – энергия на сепаратрисе. Чириков $[70]$ показал, что $\left\langle T_{y}\right\rangle$ можно найти, усреднив $T_{y}(w)$ по $w$ в пределах стохастического слоя $|w| \leqslant w_{1}$. Это дает При слабой связи $\mu \ll a_{y}$ для полуширины стохастического слоя $w_{1}$ можно использовать соотношение (4.2.23). или с учетом (6.2.19) и (6.2.21) На рис. 6.10 эта теоретическая зависимость (сплошные линии) сравнивается с результатами численных экспериментов (треугольники). При счете использовалось 100 траекторий с одинаковыми начальными условиями в плоскости ( $\alpha, x$ ) и слегка различными в плоскости $(\beta, y)$ внутри тонкого стохастического слоя. Теоретические кривые строились по формуле (6.2.23) с эмпирическим зна- Рис. 6.9. Функция (6.2.20) для диффузии в тонком слое.
|
1 |
Оглавление
|