Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике Рассмотрим гамильтониан следующего вида: Здесь использованы переменные действие – угол для первого слагаемого $H_{0}$, поэтому ему отвечает решение где $J_{0}, \omega, \beta$ – постоянные, не зависящие от $t$. Следуя Пуанкаре [337] и Цейпелю [419], мы ищем преобразование к таким новым переменным $\bar{J}, \bar{\theta}$, для которых новый гамильтониан $\bar{H}$ есть функция только переменной действия $\bar{J}$. Используя производящую функцию $S(\bar{J}, \theta)$, представим $S$ и $\bar{H}$ в виде степенных рядов по $\varepsilon$ причем член низшего порядка в $S$ выбран так, чтобы порождать тождественное преобразование $\vec{J}=J$ и $\bar{\theta}=\theta$. Старая переменная действия и новая угловая переменная определяются из выражений (1.2.13a) и (1.2.13б) соответственно Для получения нового гамильтониана необходимо выразить старые переменные через новые с помощью соотношений (2.2.5) и затем использовать формулу (1.2.13в). В первом порядке по $\varepsilon$ это сделать нетрудно Тогда из (1.2.13в) имеем Если возмущенный гамильтониан описывает автономную систему с несколькими степенями свободы или явно зависит от времени даже для одной степени свободы, то рассмотренные выше разложения оказываются расходящимися. Чтобы убедиться в этом, обобщим метод Пуанкаре–Цейпеля на случай автономного гамильтониана с $N$ степенями свободы. Явную зависимость от времени можно учесть с помощью дополнительной степени свободы в расширенном фазовом пространстве. Запишем где $\boldsymbol{J}$ и $\boldsymbol{\theta}-\boldsymbol{N}$-мерные векторы переменных действия и углов невозмущенной системы $H_{0}$, а $H_{1}$ – периодическая функция всех угловых переменных В последнем выражении использовано обозначение где $m_{i}$ – целые числа, по которым производится $N$-кратное суммирование в $(2.2 .27)$. Будем снова искать преобразование к таким переменным $\overline{\boldsymbol{J}}, \overline{\boldsymbol{\theta}}$, для которых новый гамильтониан $\bar{H}$ зависит только от $\bar{J}$. Введем производящую функцию которая в нулевом порядке по $\varepsilon$ отвечает тождественному преобразованию, а в первом содержит $N$-кратную сумму, периодическую по $\boldsymbol{\theta}$. Как и в одномерном случае, выразим старые переменные через новые с помощью этой производящей функции и подставим их в (1.2.13в). Приравнивая коэффициенты при одинаковых степенях $\varepsilon$, находим в нулевом порядке и в первом порядке Здесь вектор частот $\boldsymbol{\omega}$ невозмущенного движения определяется формулой Усредняя по всем угловым переменным, имеем и Решение $S_{1}$ последнего уравнения можно получить путем интегрирования вдоль траекторий возмущенного движения. Действительно, так как в выражении в нулевом порядке первый и третий члены правой части равны нулю, то производная $d S_{1} / d t$ равна левой части (2.2.34) и можно написать Интегрируя ряд Фурье для $H_{1}$, окончательно получаем Мы сразу же сталкиваемся с проблемой малых знаменателей, так как для любого $\overline{\boldsymbol{J}}$ всегда найдется такое $\boldsymbol{m}$, что $\boldsymbol{m} \cdot \boldsymbol{\omega}(\overline{\boldsymbol{J}})$ окажется сколь угодно близко к нулю, и сходимость рядов явно нарушается. Подчеркнем еще раз, что это обстоятельство отражает в равной мере трудности как математического, так и физического характера. Оно возникает из-за фактического действия резонансов, которое, как будет показано в $\$ 2.4$, изменяет топологию фазовых траекторий. Несмотря на это, значительные усилия были потрачены на попытки по крайней мере «отодвинуть» секулярность в более высокие порядки разложения. В защту этих, казалось бы бесперспективных, методов заметим, что они дают решения, сходящиеся к истинным решениям в определенных областях фазового пространства для конечных, но больших интервалов времени. Более того, в некоторых случаях такие решения хорошо аппроксимируют движение в течение любого времени, если используется крупноструктурное разбиение фазового пространства ${ }^{1}$ ). Последний результат связан с фактической сходимостью (согласно теории КАМ) определенных решений для некоторых значений $\overline{\boldsymbol{J}}$. Қак мы увидим ниже, в случае двух степеней свободы эти решения жестко ограничивают резонансные траектории, которые вынуждены, таким образом, оставаться вблизи нерезонансных траекторий. в котором возмущение периодично по $\theta$ с периодом $2 \pi$ и по времени с периодом $2 \pi / \Omega$, а Как и в п. 2.2а, выбираем производящую функцию $S$ в виде При этом переход от старых переменных к новым выполняется с помощью (2.2.6). Из-за явной зависимости $H_{1}$ от времени соотношение (2.2.7) изменяется: Разложение по $\varepsilon$ дает Подбирая, как и прежде, $S_{1}$ таким образом, чтобы уничтожить переменную часть $H_{1}$, находим в первом порядке по $\varepsilon$ где усреднение производится как по $\theta$, так и по $t$, а Для нахождения $S_{1}$ произведем фурье-разложение Мы вновь сталкиваемся с малыми знаменателями, препятствующими сходимости рядов. Классическая каноническая теория возмущений может быть весьма полезна при определении интегралов движения, если система находится достаточно далеко от первичных (т. е. проявляющихся в низшем порядке теории возмущений) резонансов. Для иллюстрации выберем функцию $H_{1}$, содержащую только одну гармонику по $\theta$ : Чтобы найти $S_{1}$ явно, представим $H_{1}$ и $S_{1}$ рядами Фурье где суммирование производится по всем $m$ для $l=0$ и $l=1$. Подставляя (2.2.49) в (2.2.45), определяем коэффициенты $a_{l m}$ при $l$, $m В области таких значений $\bar{J}$, при которых знаменатели не малы, функции $a_{l m}$ не имеют особенностей. В первом порядке по $\varepsilon$ новый гамильтониан, как и в одномерном случае, имеет, согласно (2.2.44), вид Новая переменная действия равна Любая функция вида $I(\bar{J})$, так же как и $\bar{J}$, является интегралом движения. Ниже (п. 2.4г) мы используем этот факт для построения глобальных интегралов движения. Взаимодействие частицы с волной. Проиллюстрируем методы и ограничения канонической теории возмущений в случае нескольких степеней свободы на практически интересном примере взаимодействия заряженной частицы с электростатической волной в однородном магнитном поле (рис. 2.3). Такая задача была рассмотрена Смитом и Кауфманом [385, 386] для случая волны, распространяющейся наклонно к магнитному полю, а для случая перпендикулярного распространения это сделали Карни и Берс [222], а также Фукуяма и др. [145]. Введем прежде всего переменные действие – угол для невозмущенной системы, гамильтониан которой имеет вид Здесь $M$ – масса частицы, $e-$ еє заряд, $c$ – скорость света. Обозначая через $\check{\boldsymbol{x}}, \boldsymbol{y}, \check{\boldsymbol{z}}$ орты координатных осей, запишем векторный потенциал однородного магнитного поля $\boldsymbol{B}_{0}$ в виде Импульс канонически сопряжен радиусу-вектору частицы $\boldsymbol{x}=x \check{\boldsymbol{x}}+y \check{\boldsymbol{y}}+z \check{\boldsymbol{z}}$. и соотношений (1.2.11) переходим к новым дрейфовым переменным: где Рис. 2.3. Траектория частицы в однородном магнитном поле $B_{0}$. Предположим, что возмущением является электростатическая волна с электрическим полем $\mathbf{E}=- В дрейфовых переменных имеем где Так как возмущенный гамильтониан не зависит от импульса $M \Omega X$, то $Y=$ const и, сдвинув $z$ или $t$ на постоянную величину, можно исключить постоянную фазу $k_{\perp} Y$ из (2.2.61). Нелинейность колебаний возникает благодаря зависимости фазы $k_{z} z-k_{\perp} \rho \sin \varphi-\omega t$ от $\sin \varphi$ и $\rho$. Поскольку гамильтониан зависит только от линейной комбинации $k_{z} z-\omega t$, то можно исключить зависимость от времени, перейдя в систему отсчета волны. Это осуществляется с помощью производящей функции Используя соотношения (1.2.13), получим новые переменные $P_{\psi}$, $\psi$ и новый гамильтониан $H$ : Здесь, как и прежде, $\varepsilon$ – малое возмущение (в конце вычислений полагают, что $\varepsilon=1$ ). Резонансные гармоники возмущения можно выявить с помощью разложения в ряд по функциям Бесселя Мы уже видели, что необходимо оставаться достаточно далеко от первичных резонансов для того, чтобы амплитуды Фурье убывали быстрее резонансных знаменателей. В нашем случае убывание амплитуд Фурье определяется функциями Бесселя $\mathcal{F}_{m}\left(k_{\perp} \rho\right)$. Невозмущенные частоты колебаний находятся из (2.2.67): Возмущение возбуждает только резонансы между основной частотой $\omega_{\psi}$ и гармониками частоты $\omega_{\varphi}$, поэтому условие резонанса имеет вид Для $k_{z}=0$ из (2.2.68б) получаем Для $k_{z} Мы исследуем эти резонансы с помощью резонансной теории возмущений в п. 2.4в. Поскольку $P_{\psi}$ является переменной действия, то для косой волны резонансы (2.2.71) неизбежны. Рассмотрим поэтому перпендикулярную волну ( $k_{z} \equiv 0$ ) в предположении, что условие резонанса (2.2.70) не выполнено. В этом случае, как будет показано ниже, при достаточно малом возмущении первичные резонансы отсутствуют. Из (2.2.34) и (2.2.67) находим где $\bar{\rho}=\rho\left(\bar{P}_{\varphi}\right)$. Решение этого уравнения имеет вид С помощью последнего выражения можно связать старые переменные действия $P_{\psi}, P_{\varphi}$ с новыми: Обращая, в первом порядке получаем Подобным же образом находим причем $\rho\left(P_{\varnothing}\right)$ определяется выражением (2.2.62). Используя соотношение (2.2.76) и фиксируя одну из фазовых переменных, можно получить графики зависимости $P_{\varphi}$ от другой фазовой переменной для различных значений инварианта $\bar{P}_{\varphi}$. Такие инвариантные кривые эквивалентны картине на поверхности Рис. 2.4. Инвариантные кривые на позерхности сечения $\varphi=\pi$ для случая нерезонансного взаимодействия частицы с волной при $k_{z}=0$ и $\omega / \Omega=$ $=-30,11$ (теория) (по данным работы [219]). сечения Пуанкаре. На рис. $2.4, a$ и $б$ показаны кривые зависимости $k_{\perp} \rho\left(P_{\varphi}\right)$ от $\psi$ при $\varphi=\pi$, полученные Карни [219]. Хотя $\psi$ и $k_{-} \rho$ не являются канонически сопряженными переменными, тем не менее основные черты фазового пространства системы представлены правильно. Для сравнения на рис. $2.5, a$ и б показаны фазовые тра- Рис. 2.5. То же, что и на рис. 2.4 (численное моделирование) (по данным работы [219]).
|
1 |
Оглавление
|