Главная > РЕГУЛЯРНАЯ И СТОХАСТИЧЕСКАЯ ДИНАМИКА (Лихтенберг А., Либерман)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

При анализе нелинейных задач широко используются методы теории возмущений: вместо исходной динамической системы изучается близкая к ней интегрируемая система, на которую действует «возмущение». Характеризуя различие между этими системами малым параметром ε и располагая невозмущенным решением, мы ищем возмущенное решение в виде разложения по степеням ε. Например, в случае слабой нелинейности линейная система интегрируется непосредственно, а возмущенное решение можно получить в виде ряда.

В этой схеме неявно предполагается, что исследуемая система является интегрируемой. Как мы видели в гл. 1, обычно это не так, и большинство многомерных динамических систем не интегрируемы. В таких системах хаотические траектории, связанные с резонансами между различными степенями свободы, занимают конечный фазовый объем, а их распределение среди регулярных траекторий оказывается всюду плотным. Теория возмущений не в состоянии описать всю сложность такого хаотического движения, что формально выражается в расходимости соответствующих рядов.

Даже в случае начальных условий, при которых траектории являются регулярными, имеются трудности при применении теории возмущений. Под действием возмущения регулярные траектории в некоторой окрестности резонансов изменяют свою топологию. Возникает характерная резонансная структура, напоминаюцая «острова», описанные в §1.4, причем их фазовый объем также конечен. Эти острова являются кмикромирами» исходной возмущенной системы, содержащими сосственные хаотические и регулярные траектории. Обычная теория возмущений не отражает изменения топологии фазового пространства и для описания регулярного движения вблизи определенного резонанса или ограниченной системы резонансов была разработана специальная резонансная теория возмущений. В настоящее время не существует методов, которые позволяли бы находить регулярные траектории с учетом всей иерархии резонансов 1 ).
1) Это не совсем так. Во-первых, существует техника построения сходящихся рядов, например, в теории КАМ [11,310,463]. Кроме того, в последнее время развиваются методы масшгабно-инвариантного описания резонансной структуры (см., например, [1.7,165,369] и $4.4,4.5 ).- Прим. ред.

Изменение топологии фазового пространства вблизи резонансов, хаотические области и характер движения в них составляют основное содержание последующих глав этой книги. В данной главе мы рассмотрим методы теории возмущений, которые используются для получения решений, «аппроксимирующих» в некотором смысле реальное движение в многомерных нелинейных системах. Решение в форме ряда может приближенно правильно отражать грубые черты истинного движения даже тогда, когда реальная траектория является хаотической или изменяет существенно свою топологию, но при этом целиком содержится в узком слое вблизи сепаратрисы и окружена регулярными траекториями. С другой стороны, теория возмущений не в состоянии дать хотя бы качественное описание хаотического движения в тех областях фазового пространства, где перекрываются основные резонансы.

Если действительная траектория регулярна, то, казалось бы, можно надеяться получить решение в виде равномерно сходящегося ряда. Однако описываемые в этой главе классические ряды, будучи весьма полезными при некоторых теоретических вычислениях, оказываются расходящимися. В классических методах амплитуда и частота колебаний представляются рядами по степеням ε при фиксированных начальных условиях. Поскольку резонансы распределены в пространстве частот всюду плотно, то по мере изменения частоты в высших порядках теории возмущений в дело вступают все новые и новые резонансы. Это обстоятельство приводит к расходимости рядов, которые в лучшем случае оказываются асимптотическими.

Поиск сходящихся решений привел Колмогорова к разработке методов сверхсходящихся разложений [229]. Им же была предложена техника, при которой частота удерживается постоянной, а начальные условия в процессе выполнения разложения изменяются. Это позволило построить сходящиеся ряды для «достаточно малых» возмущений и «достаточно далеко» от резонансов (теория KAM).

Рассмотрение теории возмущений мы начнем с краткого описания некоторых ее методов, используя простые примеры динамических систем и исследуя движение непосредственно по определяющим его дифференциальным уравнениям. Даже для нелинейного осциллятора с одной степенью свободы (интегрируемая система) разложение только амплитуды колебаний в степенной ряд приводит к появлению неограниченно растущих во времени секулярных членов и расходимости. Решая совместные уравнения для амплитуды и частоты колебаний, Линдштедт [278] и Пуанкаре [337] преодолели секулярность и получили сходящиеся ряды. Их техника описана в п. 2.1а и представлена в общей канонической форме в п. 2.2a. Этот материал составляет основу дальнейшего изложения теории возмущений.

В случае двух и более степеней свободы резонансы между основными частотами и их гармониками вызывают дополнительные
сингулярности, связанные с так называемыми мальми знаменателями, что приводит к расходимости классических рядов даже для регулярных решений. Для формального подавления этой расходимости 1 ) были предложены некоторые методы, в частности метод усреднения. Этот метод дает возможность непосредственно вычислять адиабатические инварианты, которые являются приближенными интегралами движения и получаются путем усреднения по быстрой угловой переменной системы. Адиабатические инварианты определяются формально с помощью асимптотических рядов по параметру возмущения ε. Относящиеся сюда приемы описаны в п. 2.16, а их представление в канонической форме дано в § 2.3.

Следует, однако, иметь в виду, что метод усреднения приводит к неверному выводу о том, что возмущенная система всюду интегрируема. Истинное движение, ксторому отвечает структура фазового пространства с перемежающимися областями хаотичности и островами устойчивости, подменяется всюду интегрируемым движением, вытекающим из существования адиабатических инвариантов 2 ). Будет такое описание «справедливо» или нет, определяется величиной возмущения и той степенью детальности, с которой сравниваются между собой реальное движение и предсказания адиабатической теории. Это обстоятельство подчеркивалось в п. 1.4a, где для задачи Хенона и Хейлеса (см. рис. 1.13 и последующее обсуждение) сопоставлены истинные траектории и результаты вычислений с помощью адиабатических инвариантов. Формальная расходимость 3 ) (для любого конечного ε ) асимптотического ряда, представляющего адиабатический инвариант, является еще одним свидетельством того, что метод усреднения искажает действительную структуру фазового пространства. Тем не менее этот метод весьма полезен при изучении движения в нелинейных системах.

Вблизи резонансов регулярные решения сильно возмущены и претерпевают топологические изменения. В такой ситуации классическая теория возмущений приводит к появлению малых знаменателей и расходимости рядов, как это показано в п. 2.1в. Некоторой специальной заменой переменных эта резонансная сингулярность устраняется, что делает возможным использование обычного метода усреднения. Именно такая резонансная теория возмущений, описанная в § 2.4, составляет основу нашего метода изу-
1) Правильнее было бы сказать — для построения формальных рядов, которые, вообще говоря, расходятся.- Прим. ред.
2) В общем случае более естественно было бы говорить о переменных действия, которые являются приближенными интегралами движения не только для адиабатического (медленного) возмущения, но и просто для малого возмущения. Используемые в тексте термины «адиабатическая теория». «адиабатическое приближение» и т. п. следует понимать именно в таком расширенном смысле.- Прим. ред.
3) Имеется в виду, что асимптотические ряды могут с успехом применяться для анализа движения, хотя они и являются расходящимися. Прим. ред.

чения хаотического движения. Ее детальному рассмотрению посвящены п. 2.4 а и б. В качестве примера подробно исследуется движение в магнитном поле заряженной частицы, взаимодействующей с электростатической волной (см. п. 2.4в). Предложенное в работе [111] обобщение этого метода, позволяющее одновременно избавляться от малых знаменателей целой группы резонансов, описано в п. 2.4 г.

Для простоты изложения все методы рассматриваются лишь в первом порядке по ε, а канонические преобразования выполняются с помощью зависящей от смешанного набора переменных производящей функции. Эти методы можно перенести и на более высокие порядки [34], но последовательное распутывание старых и новых переменных становится алгебраически сложным, а соответствующие ряды оказываются громоздкими. Однако высшие приближения часто необходимы, как, например, в задаче Хенона и Хейлеса, где первый порядок теории возмущений дает не̨верный результат даже в предельном случае очень низкой энергии. В $2.5 мы знакомим читателя с теорией преобразований Ли, которая пришла на смену старым способам получения классических рядов в высоких порядках по ε. Методы Ли иллюстрируются на примерах задач с одной степенью свободы и вычисления адиабатических инвариантов высших порядков.

В §2.6 рассматриваются сверхсходящиеся ряды и проводится сопоставление их с классическими рядами (п. 2.6a). Специальное применение этих методов к вычислению периодических траекторий в нелинейных системах описано в п. 2.6б.

1
Оглавление
email@scask.ru