Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Этот поучительный пример хаотического потока возник из гидродинамических уравнений, описывающих конвекцию Рэлея-Бенара. Слой жидкости конечной толщины подогревается снизу таким образом, что между верхней холодной и нижней горячей поверхностями поддерживается постоянная разность температур. Движение жидкости описывается уравнением Навье—Стокса. Предполагая поток двумерным, его можно охарактеризовать двумя переменными: функцией тока $\psi$ и отклонением $\Theta$ распределения температуры от стационарного (линейного по вертикали). Уравнения в частных производных для возмущенного потока можно преобразовать к системе обыкновенных дифференциальных уравнений. Для этого следует разложить функции $\psi$ и $\Theta$ в двойной ряд Фурье по $x$ и $z$ с амплитудами, зависящими только от времени $t$. Оставив ограниченное число членов, получим движение в конечномерном фазовом пространстве. Вывод этих уравнений движения из уравнения Навье-Стокса приведен в $\$ 7.4$. Лоренц [283] исследовал упрощенную модель, в которой было оставлено только три «наиболее важных» фурье-амплитуды. В этом приближении уравнения принима:от вид где $X$ — амплитуда конвективного движения; $Y$ — разность температур для течений вверх и вниз; $Z$ — отклонение вертикального температурного профиля от линейного, а $\sigma, r, b$ — безразмерные параметры, физический смысл которых обсуждается в $§ 7.4$. Модель Лоренца интенсивно исследовалась во многих работах (см. литературу в работе $[180]$ ). Значения параметров $\sigma$ и $b$ обычно фиксированы ( $\sigma=10, b=8 / 3$ ), и поведение системы исследуется в зависимости от $r$. Перечислим некоторые элементарные свойства модели Лоренца $[252,283,411]$. которая весьма велика для обычно используемых значений параметров: $\sigma=10, b=8: 3, \Lambda \approx-13,7$. За единицу времени объем сокращается в $e^{-\Lambda} \approx 10^{6}$ раз. С ростом $r$ характер решений меняется следующим образом. которые являются аттракторами для $1<r<r_{2}$, где Это соответствует стационарной конвекции в задаче РэлеяБенара. Рис. 1.19. Хаотическая траектория на аттракторе Лоренца при $r=28$ (по данным работы [253]). после этого она уходит по спирали от $\boldsymbol{X}_{2}$ и снова притягивается к $\boldsymbol{X}_{1}$ и т. д. Период обращения около $\boldsymbol{X}_{1,2}$ равен 0,62 , а радиус спирали изменяется приблизительно на $6 \%$ за оборот. Число оборо- Рис. 1.20. Спектр мощности $P(\omega)$ для $X(t)$ на аттракторе Лоренца при $r=28$ (по данным работы [121]). Хаотическое движение на аттракторе можно изучать при помощи отображения Пуанкаре плоскости $Z=27$. В работе [46] доказано, что это отображение является перемешивающим и эргодическим. Спектр мощности $X(t)$ приведен на рис. 1.20. Его непрерывность отражает непериодическое, хаотическое движение на аттракторе. Заметив, что зависимость $Z$ от $t$ выглядит хаотической, Лоренц [283] придумал следующий эффективный метод анализа движения. Он зафиксировал последовательные максимумы $Z_{1}, Z_{2}, \ldots$ и построил зависимость $Z_{n+1}$ от $Z_{n}$, которая приведена на рис. 1.21. Слева от пика отображение соответствует последовательным обо- Это одномерное отображение позволяет непосредственно понять хаотический характер движения на аттракторе Лоренца. Действительно, производная зависимости $Z_{n+1}\left(Z_{n}\right)$ везде больше единицы, а это, как легко показать (см. п. 7.2в), сразу приводит к экспоненциальной расходимости близких траекторий. Соответствие между странными аттракторами и одномерными отображениями будет использовано в гл. 7.
|
1 |
Оглавление
|