Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Покажем, что последовательность бифуркаций удвоения является тем механизмом, с помощью которого происходит переход от регулярного движения к хаотическому в широком классе двумерных обратимых отображений. Более того, оказывается, что вблизи перехода движение системы можно локально описать одномерным необратимым отображением. Эти результаты были получены на основе точной теории ренормализации [83]. Однако мы будем попрежнему использовать приближенную теорию Хеллемана [180$182]$. житель $\gamma$ в (7.2.44) является на самом деле сложной (фрактальной) функцией частоты $\omega$, а его среднее значение (с учетом множителя $1 / \sqrt{2}$ ) равно $\left\langle\gamma^{-2}\right\rangle^{-1 / 2}=2 \alpha^{2}\left(1+\alpha^{2}\right)^{-1 / 2}$ и в точности совпадает с результатом для случайных фаз (см. примечание редактора на с. 440).- Прим. ред. Рассмотрим последовательные бифуркации неподвижной точки ${ }^{1}$ ) периода 1 некоторого двумерного отображения $T$. После первой бифуркации эта неподвижная точка становится неустойчивой. Разложим отображение до квадратичных членов: где $u, v$ — отклонение от неустойчивой неподвижной точки. Примем, что якобиан этого отображения $B=$ const $<1$, что, во всяком случае, справедливо вблизи перехода. следующим способом (см. [182 ], приложение A): В результате получаем (7.3.2) с параметром В некоторых случаях стандартная форма (7.3.2) находится непосредственно. Например, отображение сводится к (7.3.2) с помощью замены $x=D v / 2, C=(2-\delta+\mathrm{A}) / 2$ и $B=1-\delta$. Отображение Хенона (7.1.14) может быть сразу записано в стандартной форме. и неустойчива при В результате бифуркации рождаюгся две устойчивые неподвижные точки $x_{2+}$ (см. рис. 7.12). Оба корня можно найти, записывая и итерируя (7.3.2) дважды [ср. (7.2.21)]: Подставляя $x=x_{2-}+\Delta x$ в (7.3.2), получаем где $d$ и $e$ имеют вид [см. (7.2.22) и (7.2.23) ]: При четных $n$ траектория находится вблизи $x_{2+}$, а при нечетных вблизи $x_{2-}$. Умножая (7.3.7a) на $B$, (7.3.7б) на $e$ и складывая затем с (7.3.7в), получаем где Член в квадратных скобках в (7.3.9) пропорционален $\left(\Delta x_{n}\right)^{2}$. Действительно, вводя $r=\Delta x_{n+1} / \Delta x_{n-1}$, находим Пренебрегая квадратичным членом в (7.3.7б), имеем Подстановка (7.3.12) в правую часть (7.3.11) дает Вследствие квадратичной зависимости при бифуркации удвоения $r \approx 1$, т. е. $\left|\Delta x_{n+1}\right|$ близко к $\left|\Delta x_{n-1}\right|$. Правая часть (7.3.13) имеет экстремум при $r=1$ и поэтому слабо зависит от $r$ при $r \approx 1$. Отсюда Подставляя (7.3.14) в (7.3.9) и переходя к переменной находим где Отображение (7.3.16) имеет тот же вид, что и исходное (7.3.2). Позтому неподвижные точки нового отображения испытывают бифуркацию при тех же значениях новых параметров $B^{\prime}$ и $C^{\prime}$ [см. (7.3.5) ]. Последовательность бифуркаций, которые описываются соотношениями (7.3.10), сходится при значениях $B^{\prime}=B=B_{\infty}$ и $C^{\prime}=C=C_{\infty}$. Для диссипативного отображения $|B|<1$ и из (7.3.10a) следует, что $B_{\infty}=0$. Поэтому все диссипативные отображения вблизи перехода ведут себя локально как одномерные [ср. (7.3.16) с $(7.2 .26)$ при $B^{\prime}=0$ ]. Неудивительно, что при подстановке $B=B_{\infty}=0$ в (7.3.10б) условие $C^{\prime}=C=C_{\infty}$ дает то же самое значение что и для одномерного случая. Бифуркационные значения $C_{k}$ сходятся к $C_{\infty}$ по тому же закону и с тем же множителем $\delta=1+\sqrt{17} \approx 5,12$, что и в одномерном случае. Параметр подобия $\alpha \approx-2,24$, определяемый формулой (7.3.17), также совпадает с (7.2.35). Эти результаты указывают на универсальный характер поведения всех диссипативных систем вблизи перехода к хаотическому движению; они были проверены численно для многих одномерных, двумерных и многомерных отображений. Однако следует подчеркнуть, что переход к стохастичности явітяется локальным, т. е. относится только к данной неподвижной точке с ее последовательностью бифуркаций. В общем случае в диссипативной системе имеется много неподвижных точек, каждая из которых должна претерпевать свою последовательность бифуркаций, прежде чем возникает глобальный переход к хаотическому движению и странный аттрактор ${ }^{\mathbf{1}}$ ). В противоположность этому бифуркации двумерных гамильтоновых отображений устроены более сложно. Из-за сохранения фазовой площади $B^{\prime}=B=B_{\infty}=1$ (если $B=-1$, то можно взять квадрат отображения; более подробно см. работу [182]). Поэтому бифуркации удвоения гамильтонова отображения сохраняют двумерный характер даже вблизи точки сгущения (численные данные см. в работе [36]). В результате, хотя масштабные факторы $\delta$ и $\alpha$, а также параметр $C_{\infty}$ и являются универсальными для всех двумерных гамильтоновых отображений, они имеют другие значения, чем для диссипативных отображений. Более того, для гамильтоновых отображений имеется еще один универсальный масштабный фактор $\beta$, который вместе с $\alpha$ определяет преобразование фазовой плоскости при бифуркациях. Определение $\beta$ с помощью обобщения описанного выше метода приводится в дополнении Б.
|
1 |
Оглавление
|