Главная > Общая органическая химия, Т1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.8.2.2. Реакции карбенов

Наше знание химии карбенов в значительной мере стало возможным благодаря применению физических методов, таких как химически индуцнроваиная динамическая поляризация ядер, электронный парамагнитный резонанс и импульсный фотолиз для изучения реакций карбенов в растворе [66]. Обсуждение этих методов выходит за рамки данного раздела, поэтому мы отсылаем читателей к существующим превосходным обзорам [67, 68].

(1) Циклоприсоединение

Присоединение карбенов к алкенам с образованием циклопропанов [схемы (35), (42) и (46)] является одной из наиболее характерных и синтетически полезных реакций [69]. Часто возможно успешно осуществить внутримолекулярные варианты этой реакции [см., например, уравнение ], однако они зачастую проходят с низкими выходами и осложняются водородными сдвигами и другими конкурирующими реакциями. Расчеты молекул, аналогичных (73), в которых внутримолекулярное образование циклопропана стереохимически невозможно, показывают, что в таких соединениях электронное взаимодействие с двойной связью вполне достаточно для стабилизации синглетного основного состояния карбена. Такие карбены называют «листовидными» метиленами, и было затрачено много сил, чтобы обнаружить экспериментально влияние такой неклассической стабилизации на свойства карбена [69].

Механизм межмолекулярного присоединения карбенов к алкенам широко обсуждался в течение многих лет. С поразительной химической интуицией Скелл в 1956 г. предположил, что механизм и стереохимия реакции зависят от спинового состояния карбена.

Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых -связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бирадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой -молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая -орбиталь карбена взаимодействует с -системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие -переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и Y [71]. Большинство карбенов, в том числе сильно -стабилизованный (49), ведут себя как типичные электрофилы, однако «ароматические» карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72].

Полагают, что это обусловлено включением р-орбитали карбена в -электронную систему циклоалкенового кольца.

При присоединении к цис-алкенам [уравнение (49)] несимметричные карбены проявляют удивительную стереоселективность, противоположную термодинамической, давая (81) с большим выходом, чем (82) [73]. Это, по крайней мере частично, является результатом стерического притяжения, обусловленного вторичными орбитальными взаимодействиями в переходном состоянии [74].

Расчеты присоединения триплетного метилена к этилену указывают на первоначально -подобный подход с последующим связыванием карбена с одной стороны с образованием триплетного триметиленового бирадикала [50]. Триплетные карбены обычно реагируют с алкенами медленнее синглетных, для диенов справедливо обратное соотношение. Алкен (83) служит полезным индикатором мультиплетности карбена, поскольку синглетные карбены присоединяются к нему без перегруппировки, в то время как присоединение триплета приводит к (84), который быстро перегруппировывается с образованием (85) [50], как показано на схеме (50). Правила орбитальной симметрии разрешают как , так и -присоединение к сопряженным диенам, однако отталкивание за счет замкнутой оболочки делает невыгодным -присоединение, и оно наблюдается очень редко [75]. Однако цикло-пропенилиден присоединяется в положение 1,4 к тетрациклонам, а дифторкарбен присоединяется к норборнадиену в [76].

Карбены присоединяются также к алкинам, аренам, гетероаренам и различным другим ненасыщенным группам, таким как и [69].

(2) Реакции внедрения и отщепления

Характерные межмолекулярные и внутримолекулярные реакции внедрения по связи [см., например, уравнения (51) и (52)], присущи большинству карбенов и многим типам связей, например [47]. При внедрении самого метилена по связи в растворе фактически не обнаруживается различий между первичными, вторичными и третичными связями; в газофазных реакциях такие различия не слишком велики, например в случае изопентана относительная скорость внедрения следующая: первичная связь 1,0; вторичная связь 1,2; третичная связь 1,4. При наличии в карбене арильных групп, галогенов или электроноакцепторных заместителей селективность возрастает. Пр и взаимодействии с алкенами основной реакцией является присоединение по двойной связи; внедрение по связи лишь слабо конкурирует с ним и только в случае более реакционноспособных карбенов.

Как и в случае реакции присоединения, возможен одностадийный синхронный или двухстадийный механизмы [38].

Достаточно надежно установлено, что синглетный метилен внедряется по связям и по синхронному механизму, что подтверждается, например, сохранением конфигурации при взаимодействии с хиральными центрами. Предложено два типа переходных состояний внедрения по связи . Одно из них включает триангулярное приближение (86), а второе — концевую атаку вдоль линии связи (87). Расчеты реакции метилен+метан согласуются с электрофильной атакой свободной р-орбитали карбена, направленной на водородный атом под небольшим углом — геометрия (88), с последующим подходом метилена с одной стороны и переносом водорода при сближении на расстоянии примерно 300 нм, с преобразованием в молекулу с геометрией этана [77]. Однако при внутримолекулярной реакции внедрение проходит, по-видимому, преимущественно по тем связям, , которые наиболее легко включаются в переходное состояние, близкое к триангулярному.

Хотя синглетные карбены реагируют со связями по схеме синхронного внедрения, очевидно, что при взаимодействии со связями происходит отщепление {см., например, схему ] [68]. Синглетная радикальная пара, которая может образоваться через илид, сочетается далее с образованием продукта «внедрения», хотя может проходить также диспропорционирование.

Внедрение триплетных карбенов проходит только по механизму отщепления-рекомбинации [схема ], как показано с помощью изучения ХИДПЯ [67, 68] и что подтверждается образованием рацемических продуктов в реакциях с хиральными соединениями [78]. В целом синглетные карбены реагируют с галогенсодержащими субстратами преимущественно с отщеплением галогена, а не водорода; для триплетов справедливо обратное.

(3) Реакции с нуклеофилами

Как и следовало ожидать для электронодефицитных частиц, большинство карбенов легко реагирует с гетероатомами, обладающими свободной парой электронов, с образованием илидов, которые могут быть выделены или превращены в продукты реакции путем обычных перегруппировок, реакций элиминирования и расщепления. Очень легко реагируют поляризующиеся нуклеофилы, например (89) реагирует с диметилсульфидом в семь раз быстрее, чем с циклогексеном [уравнение (55)]. Другие примеры реакции, включающие образование илидов, приведены в [47, 79].

(4) Перегруппировки

Для синглетных карбенов свойственны -сдвиги [80—82]. Очень легко мигрирует водород [см. уравнение ], но возможны также миграции алкильных и арильных групп, например в (90) [уравнение ], а также RS и F. Эта реакция используется для синтеза алкенов против правила Бредта [83].

В подходящих условиях карбены, имеющие -ненасыщенные заместители, например (), подвергаются карбен-карбеновым перегруппировкам через (92) [схема (57)]. При X=0 такое взаимное превращение предшествует перегруппировке Вольфа для фотолитически генерированных кетокарбенов [84]. К этой же группе относятся арилкарбены и, хотя обычно они не перегруппировываются в растворе, в условиях импульсного вакуумного пиролиза при температуре ниже устанавливается их равновесие с ароматическими карбенами [схема ] при более высоких температурах протекает также сужение цикла с образованием, например, винилиденциклопенгадиена [83, 85—88].

Внешне аналогичную серию перегруппировок претерпевают арил-нитрены (см. гл. 6.6).

Другими характерными для карбенов перегруппировками и фрагментациями являются превращения циклопропенилидена в аллен, циклобутилидена в метиленциклопропан [47], а также превращения, иллюстрируемые схемами (59) [83] и (60).

1
Оглавление
email@scask.ru