Главная > Общая органическая химия, Т1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.2.2. ПОЛУЧЕНИЕ ОЛЕФИНОВ

Разработано большое число методов синтеза соединений, содержащих двойную связь [5]. Здесь мы рассмотрим лишь реакции, используемые для синтеза олефинов. Особое внимание уделено методам, которые позволяют контролировать положение и (или) стереохимию двойной связи. Различают два основных типа реакций: 1) реакции, приводящие к введению двойной связи в существующий углеродный скелет; и 2) реакции, приводящие к созданию углеродного скелета с одновременным введением двойной связи.

Первый тип включает главным образом различные реакции -элиминирования и его удобно разделить на несколько подгрупп.

2.2.2.1. Элиминирование в системах

В этот раздел включены многие из давно известных способов получения олефинов. К сожалению, их общим недостатком является ограниченная возможность контроля положения вновь образующейся двойной связи, поскольку в молекуле обычно имеется более одной связи , водород которой может отщепляться вместе с уходящей группой (X).

Такие способы могут иметь препаративную ценность в следующих случаях: 1) если исходное вещество содержит лишь один атом , связанный с Н, 2) если два или три атома равноценны по симметрии, 3) если один из олефинов, который может образоваться, термодинамически значительно более устойчив, чем остальные, и реакция может контролироваться равновесием, или же строение переходного состояния близко к строению продуктов реакции (ориентация по Зайцеву). Иногда стереохимический контроль может быть до известной степени обеспечен, если реакция является или чисто анти- (Н и X уходят с разных сторон вновь образующейся связи), или чисто син-элиминированнем (Н и X уходят с одной и той же стороны).

Типичным примером такой реакции является элиминирование из алкилгалогенидов и тозилатов. Решающую роль играет выбор основания. В общем случае, стерически затрудненные основания благоприятствуют отщеплению, а не возможной конкурирующей реакции замещения [7]. Так, в случае третичных алкилгалогенидов элиминирование происходит под действием самых различных оснований, для вторичных алкилгалогенидов необходимы более специфичные основания, а первичные алкилгалогениды образуют олефины с хорошим выходом лишь при использовании сравнительно небольшого числа систем основание — растворитель, например трет-бутилат калия в ДМСО или этилдиизопропиламин (основание Хунига). Так, н-октилбромид дает при обработке основанием Хунига при с выходом 99%. Использование оснований с объемистыми заместителями приводит к образованию менее устойчивого олефина (ориентация по Гофману) за счет менее пространственно затрудненного переходного состояния.

Еще одно осложнение связано с тем, что в случае систем, склонных к перегруппировкам, например для борнилтозилата, в качестве продуктов реакции часто образуются перегруппированные олефины, если только сольволиз не сведен к минимуму за счет использования апротонных сред, например комплекса трет-бутилата калия с в бензоле. Другими особенно эффективными основаниями, благоприятствующими элиминированию, а не замещению, являются бициклические амидины — -диазабицикло и -диазабицикло [8].

Другим хорошо известным путем синтеза олефинов является дегидратация спиртов. Он обладает тем же недостатком, что и описанный выше, а именно отсутствием структурного контроля. Дегидратацию часто катализуют кислотами, а это приводит, в случае подходящих систем, к перегруппировкам карбениевых ионов. Однако в благоприятных случаях, например (47) и (48), могут быть достигнуты хорошие выходы. Как и следовало ожидать для реакций с участием карбениевых ионов, третичные спирты дегидратируются легче, чем вторичные. Так, дегидратация (48) может быть осуществлена под действием бисульфата калия, хлороксида фосфора в пиридине или просто нагреванием в присутствии следов иода.

Пиролитическое элиминирование третичных аминов из четвертичных гидроксидов аммония, например , проходит предпочтительно с образованием менее замещенного олефина [9]

и является примером ориентации по Гофману, если только отсутствует активация более замещенной группы , например ароматическим кольцом. В общем случае, гофмановское отщепление идет как анти-процесс, хотя в средних циклах транс-олефин получается в ходе син-элиминирования (ср. уравнение 1). Этот

замечательный пример преимущественного образования более пространственно-затрудненного олефина является яркой иллюстрацией того, что строение переходного состояния при отщеплении по Гофману имеет мало общего с продуктами реакции.

К другому типу элиминирования относится пиролиз эфиров карбоновых кислот и родственных производных спиртов [11]. Эти реакции представляют собой син-элиминирование (см., например, уравнение 2) благодаря чему в некоторых случаях может быть достигнута определенная степень структурного контроля за счет выбора подходящей стереохимии исходного вещества (см., например, уравнение 3). В более сложных случаях наблюдаются перегруппировки, которые могут быть сведены к минимуму при использовании ксантогенатов (дитиокарбонатов), элиминирование из которых требует к тому же более низких температур, чем при реакции эфиров карбоновых кислот [12].

Для препаративных целей используют также пиролиз фенилуретанов вторичных и третичных спиртов.

Широкий диапазон родственных реакций син-элиминирования, идущих через пятичленное циклическое переходное состояние, можно проиллюстрировать на примере пиролиза аминоксидов (элиминирование по Коупу) [9] (уравнение 4). Аналогичное элиминирование из сульфоксидов и селеноксидов стало в последнее время популярным способом получения олефинов. Элиминирование из селеноксидов идет в очень мягких условиях при комнатной или немного более высокой температуре, а окисление селенида обычно приводит непосредственно к продуктам элиминирования [13] (см., например, уравнение 5).

1
Оглавление
email@scask.ru