Главная > Общая органическая химия, Т1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.1.10. РЕАКЦИИ ЦИКЛОАЛКАНОВ И ПОЛИЦИКЛОАЛКАНОВ

Многие из реакций ациклических насыщенных углеводородов, рассмотренных выше, применимы также для циклоалканов и полициклоалканов. Так, многие циклоалканы вступают в реакции ионного и свободнорадикального галогенирования, окисления и нитрования без изменения скелета или разрыва углерод-углеродной связи. Различия в химическом поведении часто обусловлены наличием в некоторых циклических структурах избыточного углового напряжения. Как отмечалось в разделах, посвященных стереохимии и термохимии, угловое напряжение характерно для малых циклов, что отражается на значениях их теплот сгорания и энергиях циклизации (см. табл. 2.10). Следует ожидать, что наличие сильного углового напряжения должно отразиться и на некоторых химических свойствах. Циклопропан гораздо более реакционноспособен, чем другие циклоалканы, благодаря освобождению энергии напряжения при раскрытии цикла. Так, одной из наиболее легко проходящих реакций изомеризации является превращение циклопропана в пропен. Эта реакция может быть осуществлена термически или каталитически в присутствии платины, палладия, железа, никеля, родия или оксида алюминия при значительно более низких температурах. Циклобутан менее реакционноспособен, чем циклопропан, а циклоалканы с большими циклами реагируют в большинстве случаев аналогично соответствующим ациклическим соединениям. Хорошей иллюстрацией является поведение циклоалканов при каталитическом гидрогенолизе [81]. Каталитический гидрогенолиз ординарной углерод-углеродной связи в ациклических алканах проходит только при высоких температурах и в конечном итоге ведет к метану. Однако гидрогенолиз циклопропана и многих алкилциклопропанов на платине идет легко при комнатной температуре. Для гидрогенолиза циклобутана в н-бутан требуется более высокая температура.

Очень напряженные полициклоалканы, состоящие из нескольких конденсированных циклопропановых или циклобутановых колец, подвергаются каталитическому гидрогенолизу с большой легкостью. Процесс гидрогенолиза характеризуется, по-видимому, обшей чертой: разрываются те связи, при разрыве которых освобождается наибольшее количество энергии напряжения. Это обобщение справедливо и для гидрогенолиза простых алкилциклопропанов [81]. Некоторые примеры гидрогенолиза малых циклов приведены ниже (уравнения 44—48).

Раскрытие кольца циклопропана наблюдается также в некоторых ионных реакциях присоединения. Так, при действии брома, галогеноводородов и серной кислоты циклопропан дает соответственно -дибромииклопропан, н-пропилгалогенид и н-пропанол. Простые производные циклобутана так легко не вступают в эти реакции. Примеры электрофильного присоединения брома к циклопропанам даны ниже (уравнения 49—51).

Однако не все реакции циклопропанов приводят к ациклическим продуктам. Свободнорадикальное хлорирование циклопропана в мягких условиях приводит к хлор- и -дихлорциклопропанам. Аналогично идет свободнорадикальное галогенирование высших циклоалканов. Некоторые полициклоалканы очень легко подвергаются ионному бромированию по атому углерода, находящемуся в голове мостика. Так, адамантан, диамантан, триамантан и их алкильные производные селективно реагируют с жидким бромом, давая соответствующие бромиды [134]. Однако в присутствии кислот Льюиса образуются полибромпроизводные. Циклоалканы и полициклоалканы селективно окисляются озоном, адсорбированным на силикагеле [144]. Алкилциклопропаны реагируют по -положению без раскрытия кольца, образуя алкилциклопропилкетоны с высоким выходом. Например, тетраспироциклопропан реагирует с озоном, адсорбированным на силикагеле, давая моно- и дикетоны (уравнение 52). Другие примеры использования озона для введе-

ния функциональных групп в циклоалканы показаны ниже (уравнения 53—56).

Для превращения полициклоалканов в кетоны была использована также концентрированная серная кислота; препаративное значение такой реакции ограничено, по-видимому, окислением адамантана и его производных [134].

Как и в случае ациклических алканов, имеется большое число примеров реакций изомеризации и перегруппировки моно- и полициклоалканов [141, 142]. Кислоты Льюиса как катализаторы вызывают реакции сужения и расширения циклов, проходящие через карбениевые ионы, по типу, рассмотренному для изомеризации н-бутана в изобутан. В равновесной смеси циклоалканов обычно преобладают пяти- и шестичленные циклы. Трех-, четырех-, семи- и более высокочленные циклы обычно отсутствуют в равновесных смесях, что находится в согласии с общими соображениями относительно энергии напряжения этих циклов. Так, циклопентан не образует циклопропанов или метилциклобутана, а циклогептан изо-меризуется в метилциклогексан. При обычной температуре в равновесной смеси пяти- и шестичленных циклов преобладают изомеры с большим циклом. Так, в присутствии алюминийгалогенидов при метилциклопентан и циклогексан образуют равновесную смесь, содержащую 88% циклогексана. Перегруппировка полициклоалканов, проходящая через карбениевые ионы, может иметь синтетическое значение; особенно большой интерес представляет синтез адамантанов из напряженных полициклов, катализуемый кислотами Льюиса (см. уравнения 40—42). Хотя такие перегруппировки проходят по сложному механизму, высокая термодинамическая устойчивость продуктов обеспечивает протекание реакции [145].

Высокое угловое напряжение в полициклах, включающих малые кольца, обеспечивает протекание недавно обнаруженных перегруппировок и реакций изомеризации под влиянием ионов металлов и комплексов металлов. Некоторые примеры таких реакций приведены ниже (уравнения 57—64).

(64)

Иногда тип изомеризации или перегруппировки зависит от природы катализатора. Например, в присутствии комплексов родия (I) кубан дает кунеан, а в присутствии ионов серебра — трициклооктадиен. Предполагают, что в этих реакциях принимают участие металлорганические интермедиаты, однако истинный механизм реакций все еще недостаточно понятен. Для объяснения механизма реакции были предположены: образование металлокарбениевых ионов, комплексов металлокарбена и окислительное присоединение металла к напряженной ординарной углерод-углеродной связи [146].

ЛИТЕРАТУРА

Литература (продолжение)

Литература (продолжение)

Литература (продолжение)

Литература (продолжение)

Литература (продолжение)

Литература (окончание)

1
Оглавление
email@scask.ru