Главная > Лекции по гидроаэромеханике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2. ПЕРЕХОД ОТ ПЕРЕМЕННЫХ ЛАГРАНЖА К ПЕРЕМЕННЫМ ЭЙЛЕРА И ОБРАТНО

1. Пусть задача математического описания движения жидкости решена в переменных Лагранжа и требуется записать решение в переменных Эйлера. В переменных Лагранжа решение имеет вид

Так как между координатами x, у, z и а, b, с имеет место взаимно-однозначное соответствие, то якобиан

При и якобиан равен единице. Систему (2.1) можно разрешить относительно а, b, с и найти

Подставив (2.5) в (2.2) и (2.3), получим решение задачи, записанное в переменных Эйлера:

2. Пусть задача решена в переменных Эйлера. Это значит, что гидродинамические величины известны в виде (2.6) и (2.7). Чтобы осуществить переход от переменных Эйлера к переменным Лагранжа, надо прежде всего найти формулы вида (2.1), связывающие координаты x, у, z с переменными а, b, с, t. В формулах (2.1) величины а, b, с играют роль начальных координат, постоянных для каждой частицы, а время t — независимая переменная. Поэтому, рассматривая координаты частицы как функции времени, можем написать

Но известны в виде (2.6). Подставив (2.6) в правые части (2.8), получим систему обыкновенных дифференциальных уравнений для отыскания искомой зависимости вида (2.1)

Проинтегрировав систему (2.9), найдем х, у, z как функции t:

Здесь — произвольные постоянные. По определению при . Подставляя эти значения в (2.10) и решая полученные равенства относительно находим как функции а, b, с. Подставляя в (2.10) и опуская при написании аргумент , так как он один и тот же для всей задачи, получаем искомые формулы (2.1). Если теперь формулы (2.1) подставить в известные выражения для гидродинамических величин (2.6) и (2.7), то получим эти величины в переменных Лагранжа.

Замечание. Переход от переменных Эйлера к переменным Лагранжа более сложен, так как он связан с необходимостью интегрировать систему дифференциальных уравнений.

1
Оглавление
email@scask.ru