Главная > Теоретическая механика (Голубева О.В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2. Сложение скоростей

Относительная, переносная и абсолютная скорость точки

Пусть точка М движется по кривой АВ (относительной траектории) (рис. 38), жестко связанной с подвижной системой координат, и за время перемещается из положения А в положение В. Тогда относительной скоростью точки, которую обозначим будет:

За то же время кривая АВ вместе с подвижной системой координат переместится в пространстве (совершив переносное

Рис. 38

движение) и займет положение (рис. 38). За время точка А подвижной среды переместится в положение С. Следовательно, переносной скоростью, которую назовем будет:

За время по отношению к неподвижной системе координат точка переместится на вектор Следовательно, абсолютная скорость точки, которую обозначим запишется:

Теорема сложения скоростей

Векторы, указанные выше, связаны соотношением

Разделив это равннство на и переходя к пределу при стремящемуся к нулю, имеем:

Но по модулю равно (рис. 38) и так как АВ и величины бесконечно малые, то будет величина бесконечно малая первого порядка, которая в пределе обратится в нуль:

Таким образом, окончательно имеем:

Полученное равенство представляет собой теорему сложений скоростей, которая гласит: скорость абсолютного движения равна векторной сумме относительной и переносной скорости.

Сложение движений материальной точки

Теорема сложения скоростей распространяется и на случай, когда абсолютное движение состоит из любого числа движений. Действительно, пусть, например, относительное движение

является результирующим двух движений, со скоростями Тогда по теореме сложения скоростей имеем:

Пусть при этом скорость переносного движения равна тогда

Подобные же рассуждения приводят к тому, что если точка участвует одновременно в движениях, то скорость сложного движения будет равна векторной сумме скоростей составляющих движений:

Заметим, что формально записанное в первой главе выражение скорости через ее проекции

представляет с физической стороны разложение пространственного движения точки на три прямолинейных движения вдоль координатных осей.

Абберационное смещение звезд

В качестве примера применения теоремы сложения скоростей рассмотрим смещение изображений звезд на небесной сфере, возникающее в результате движения Земли вокруг Солнца.

Рис. 39

Рис. 40

Основную систему координат свяжем жестко с плоскостью движения Земли вокруг Солнца. Подвижную систему свяжем с центром Земли и предположим, что она движется поступательно относительно основной системы со скоростью Рассматривая свет как поток прямолинейно движущихся квантов, обозначим скорость их в основной системе через (рис. 39) и угол между через а. Скорость квантов в подвижной системе, связанной с Землей, обозначим через и угол между через а (рис. 39). В силу теоремы сложения скоростей имеем (рис. 40):

Введем углы Р и Р, равные

и спроектируем результирующую и составляющие скорости на направление и перпендикулярное ему. В результате получим:

Откуда

Или так как есть скорость света, которая обозначается через с, то последнюю формулу можно переписать в виде:

где определяет угол, на который смещается видимое изображение звезды на небесной сфере (в результате движения Земли) по отношению к направлению, по которому располагается звезда относительно солнечной системы.

Так как угол мал, то, применяя теорему синусов к треугольнику скоростей, найдем

Максимальное значение этого угла (при ) соответствует 20,47.

Более точный разбор этой задачи в последней части книги.

1
Оглавление
email@scask.ru