Главная > Теоретическая механика (Голубева О.В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 3. Дифференциальные уравнения движения

Дифференциальное векторное уравнение движения точки

Основной закон механики, как указывалось, устанавливает для материальной точки связь между кинематическими (w — ускорение) и кинетическими ( — масса, F — сила) элементами в виде:

Он справедлив для инерциальных систем, которые выбираются в качестве основных систем, поэтому фигурирующее в нем ускорение резонно называть абсолютным ускорением точки.

Как указывалось, сила, действующая на точку, в общем случае зависит от времени положения точки, которое можно определить радиусом-вектором и скорости точки Заменяя ускорение точки его выражением через радиус-вектор, основной закон динамики запишем в виде:

В последней записи основной закон механики представляет собой дифференциальное уравнение второго порядка, служащее для определения уравнения движения точки в конечной форме. Уравнение, приведенное выше, называется уравнением движения точки в дифференциальной форме и векторном виде.

Дифференциальные уравнение движения точки в проекциях на декартовы координаты

Интегрирование дифференциального уравнения (см. выше) в общем случае представляет собой сложную задачу и обычно для решения ее от векторного уравнения переходят к скалярным уравнениям. Так как сила, действующая на точку, зависит от времени положения точки или ее координат и скорости точки или проекции скорости то, обозначая проекции вектора силы на прямоугольную систему координат соответственно дифференциальные уравнения движения точки в скалярной форме будут иметь вид:

Естественная форма дифференциальных уравнений движения точки

В тех случаях, когда заранее известна траектория точки, например, когда на точку наложена связь, определяющая ее траекторию, удобно пользоваться проекцией векторного уравнения движения на естественные оси, направленные по касательной, главной нормали и бинормали траектории. Проекции силы, которые назовем соответственно будут в этом случае зависеть от времени t, положения точки, которое определяется дугой траектории и скорости точки, или Так как ускорение через проекции на естественные оси записывается в виде:

то уравнения движения в проекции на естественные оси имеют вид:

Последние уравнения называются естественными уравнениями движения. Из этих уравнений следует, что проекция действующей на точку силы на бинормаль равна нулю и проекция силы на главную нормаль определяется после интегрирования первого уравнения. Действительно, из первого уравнения будет определено как функция времени t при заданной тогда, подставляя во второе уравнение найдем так как при заданной траектории радиус кривизны ее известен.

Дифференциальные уравнения движения точки в криволинейных координатах

Если положение точки задано ее криволинейными координатами то, проектируя векторное уравнение движения точки на направления касательных к координатным линиям, получим уравнения движения в виде:

Или, так как величина постоянная и учитывая, что (см, стр. 34)

то последние уравнения перепишем в виде:

где скалярные произведения называются обобщенными силами точки. Приведенные в настоящем параграфе различные формы дифференциальных уравнений движения точки Эквивалентны друг другу и являются различной записью второй аксиомы. Выбор той или иной формы определяется лишь удобством использования уравнений при решении каждой конкретной задачи.

1
Оглавление
email@scask.ru