Главная > Теория случайных функций и ее применение к задачам автоматического управления
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 100. Общие принципы метода линеаризации операторов

Метод линеаризации операторов с точки зрения изложенной в предыдущих главах общей теории случайных функций может быть применен в двух различных вариантах. Во-первых, можно непосредственно линеаризовать заданную зависимость между случайными функциями и заменить таким образом нелинейные уравнения, связывающие случайные функции, линейными. Во-вторых, можно применить метод канонических разложений, который приводит к замене операций над случайными функциями операциями над обычными случайными величинами, после чего можно применить обычный в теории вероятностей метод линеаризации функциональных зависимостей между случайными величинами.

Метод непосредственной линеаризации преобразования случайных функций состоит в замене всех заданных уравнений, связывающих случайные функции, приближенными линейными уравнениями, достаточно хорошо отражающими истинную зависимость между случайными функциями в области практически возможных реализаций случайных функций. Так как математические ожидания случайных величин

являются средними значениями, около которых рассеиваются их возможные реализации, то практически удобнее всего производить линеаризацию соотношений между случайными функциями относительно их отклонений от математических ожиданий, т. е. центрированных случайных функций. При этом все функции, входящие в заданные уравнения, следует разложить в ряды Тейлора по центрированным случайным функциям и отбросить члены этих рядов выше первой степени. Степень точности получаемого таким образом приближения может быть оценка по максимальной возможной величине отброшенных членов в области практически возможных реализаций случайных функций. Заменив данные уравнения, связывающие случайные функции, приближенными линейными уравнениями, мы можем применить изложенную в предыдущей главе теорию линейных преобразований случайных функций для приближенного определения математических ожиданий и корреляционных функций случайных функций, полученных в результате рассматриваемого нелинейного преобразования. В следующем параграфе мы дадим более подробное изложение метода непосредственной линеаризации в применении к случайным функциям скалярной независимой переменной, связанным обыкновенными дифференциальными уравнениями.

Перейдем к применению метода канонических разложений к приближенному исследованию нелинейных преобразований случайных функций. Предположим, что случайная функция получается в результате преобразования случайной функции при помощи некоторого нелинейного оператора А:

Подставляя сюда вместо случайной функции какое-либо ее каноническое разложение, получим:

Это равенство представляет случайную функцию как некоторую, вообще говоря нелинейную, функцию случайных величин в которую аргумент 5 входит как параметр:

Линеаризуя эту функцию обычным в теории вероятностей способом (см. § 31) и принимая во внимтние, что математические ожидания величин равны нулю, будем иметь:

или

где

есть значение производной функции по случайной величине при нулевых значениях всех величин что и отмечено нуликом внизу у квадратной скобки. Формула (100.5) дает приближенное каноническое разложение случайной функции с коэффициентами разложения и координатными функциями

Принимая во внимание, что математические ожидания всех величин равны нулю, получим из (100.5) следующую приближенную формулу для математического ожидания случайной функции

Таким образом, для приближенного определения математического ожидания случайной функции следует в соотношении (100.1), связывающем случайные функции и заменить эти случайные функции их математическими ожиданиями Это правило вполне аналогично правилу приближенного определения математического ожидания случайной величины, связанной с другой случайной величиной нелинейной функциональной зависимостью, выведенному в § 31.

Корреляционная функция случайной функции на основании общей формулы (56.2), выразится приближенной формулой

Степень точности формул (100.7) и (100.8) зависит от того, насколько точно формула (100.5) представляет истинную зависимость случайной функции от случайных величин в области их практически возможных значений.

Так как в общей формуле (100.1) могут означать любые совокупности скалярных аргументов, в том числе и таких, которые могут принимать только определенные целочисленные значения, то общие формулы (100.7) и (100.8) применимы и к случаю преобразования векторных случайных функций.

Заметим, что производную в формуле (100.6) можно приближенно заменить отношением конечных приращений. Тогда вместо формулы (100.6) получим для функций приближенную формулу

или

Формула (100.10) несколько более точна, чем формула (100.9), так как дает среднее значение промззодной в интервале значений симметричном относительно математического ожидания случайной величины Но зато формула (100.10) требует вдвое большего объема вычислений, чем формула (100.9).

1
Оглавление
email@scask.ru