Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Дифференциальные тождества.Такой физический закон, как уравнения гравитационного поля, не может быть получен путем чисто логических рассуждений. Однако класс возможных уравнений поля уже ограничен нашими требованиями того, что поле должно представляться десятью дифференциальными уравнениями второго порядка относительно Десять дифференциальных уравнений для различные решения в сущности являются эквивалентными представлениями одного и того же физического состояния, так как их различие отражает только возможность произвольного выбора систем отсчета, в которых может быть описано гравитационное поле. Таким образом, действительно отличных друг от друга гравитационных полей гораздо меньше, чем формально различных решений уравнений пиля. Чтобы ограничить число формальных решений, на систему координат следует наложить дополнительное условие. Так как преобразования координат содержат четыре произвольные функции (в четырехмерном пространстве), то можно составить четыре уравнения для При добавлении к десяти ковариантным уравнениям поля четырех координатных условий получается система из четырнадцати уравнений, имеющая то же множество неэквивалентных решений, что и система десяти уравнений поля, взятая отдельно, но с меньшим числом формально различных решений. Четырнадцать полностью независимых уравнений для десяти переменных имели бы слишком мало решений. Эти решения соответствуют либо плоской метрике, либо, в лучшем случае, они определяют значительно меньшее количество действительно различных состояний, чем то, которое можно получить, допуская произвольное распределение материи в пространстве. Поэтому, кроме четырнадцати уравнений, Четыре координатные условия являются в значительной степени произвольными. Они могут быть любыми нековариантными уравнениями, содержащими необходимо, чтобы тождества содержали только ковариантные уравнения поля и чтобы они были независимы от координатных условий. Предыдущие рассуждении показывают, что десять уравнений поля в силу их ковариантности должны удовлетворять четырем тождествам. Однако до сих пор мы еще ничего не знаем о форме самих уравнений и природе соответствующих им тождеств. Чтобы решить эти вопросы, используем свойства тензора Р. Если рассматривать материю как сплошную среду, правыми частями уравнений гравитационного поля будут величины
Закон сохранения энергии и импульса может быть выражен уравнением
Поэтому можно ожидать, что десять величин, стоящих в левых частях уравнений поля, являются компонентами симметричного тензора второго ранга, а четыре тождества имеют вид дивергенций.
|
1 |
Оглавление
|