Главная > Введение в теорию относительности
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Обобщенные преобразования.

«Длина» в пространстве Минковского, определяемая по (5.1), имеет вид, отличный от (5.26). Поэтому в дальнейшем мы не будем ограничиваться преобразованиями, оставляющими инвариантным (5.26), а рассмотрим более общие преобразования координат. Сперва может показаться, что мы уклоняемся от нашей основной цели, рассматривая преобразования гораздо более общего типа, чем преобразования Лорентца. Однако эти преобразования нам понадобятся в общей теории относительности; помимо этого, поскольку они во многих отношениях так же просты, как и менее общая гругша преобразований Лорентца, мы в дальнейшем будем избавлены от ненужных повторений.

Рассмотрим пространство, в котором введена декартова система координат, так что длина определяется согласно (5.26). Перейдем далее от декартовой системы координат к другой, недекартовой системе. Новые координаты обозначим через (индексы наверху, конечно, не надо путать с показателями степени). Мы имеем тогда:

где функций произвольны; предполагается только, что они нужное число раз дифференцируемы, что якобиан преобразования

нигде не обращается в нуль, и что действительны для всех действительных значений

квадратичная форма относительно вообще говоря, не является квадратичной формой относительно Однако квадрат расстояния между двумя бесконечно близкими точками продолжает оставаться квадратичной формой по отношению к дифференциалам координат. В декартовых координатах бесконечно малое расстояние определяется соотношением

Дифференциалы выражаются через следующим образом:

Подставляя это в (5.47), получим:

Отсюда видно, что является квадратичной формой независимо от выбора системы координат. Это подтверждает, таким образом, что при общих преобразованиях координат роль разностей координат и расстояния которыми удобно пользоваться в декартовой системе координат при ортогональных преобразованиях, играют дифференциалы координат и дифференциал расстояния

1
Оглавление
email@scask.ru