8.5. Выделение и локализация края
Если сигнал, полученный в результате усиления краев, существенно превышает шум, мы можем сделать вывод о том, принадлежит ли определенная точка краю или нет. Такое решение не является абсолютно надежным, так как добавляемый шум в данной точке может оказаться значительным. Все, что мы можем сделать, — это уменьшить вероятность подобного события, выбирая порог таким образом, чтобы число ошибочно отнесенных к краю точек лежало в допустимых пределах.
Если порог слишком высок, слабовыраженные края будут пропущены. Таким образом, существует противоречие между двумя видами ошибок. Увеличивая размер участков, по которым производится усреднение, или (что одно и то же) уменьшая частоту, выше которой подавляются частотные компоненты изображения, мы можем снизить влияние шума и упростить выделение слабовыраженных краев. Однако тут же мы сталкиваемся с противоположной проблемой, вызванной тем, что с увеличением участков в них могут попасть другие края. Тем самым мы видим, что для распознавания коротких краев необходимо, чтобы они были более контрастны.
Изображение с обостренными краями будет иметь большие значения яркости не только в тех пикселах, которые непосредственно расположены на крае, но и в некоторых соседних. Этот эффект особенно ярко проявляется в тех случаях, когда в целях уменьшения шума изображение предварительно сглаживается. Отсюда возникает проблема локализации краев. Если бы не шум, мы могли бы надеяться обнаружить максимальные значения яркости непосредственно на крае. Эти экстремальные значения могли бы затем использоваться для подавления соседних больших значений.
При использовании в качестве оператора квадрата градиента на обработанном изображении каждому краю будет соответствовать гребень с высотой, пропорциональной квадрату перепада яркости. В случае операторов Лапласа или квадратичной вариации возникнут два параллельных гребня по каждую сторону от края. При использовании лапласиана эти гребни будут иметь противоположные знаки и край будет проходить там, где происходит смена знака.