18.4. Армирование срединной поверхности малорастяжимыми волокнами
Рассмотрим оболочку, срединная поверхность которой армирована двумя семействами малорастяжимых волокон. Сопоставление соотношений (18.6) и (18.18) показывает, что система уравнений (18.18) заменяется следующей:
с тем же определителем
В случае имеем из (18.28)
В случае же из (18.28), (18.29) следует
Таким образом, второму случаю, как и в предыдущем параграфе, отвечают равнонаклоненные семейства армирующих волокон. Соотношениям (18.30) удовлетворим тождественно, полагая
В силу малости можно считать для связующего материала (эластомерной матрицы)
полагая тем самым, что для связующего материала координатные оси являются главными осями тангенциальной деформации. При этом, поскольку из (18.32) следуют те же соотношения (18.25):
Рис. 18.1
Определим усилия, к которым сводятся действующие в волокнах силы. Из рис. 18.1, отвечающего деформированной оболочке, усматривается для семейства волокон
Аналогичные зависимости имеют место и для недеформированной оболочки:
Поскольку в рассматриваемом случае координатные линии отвечают главным осям тангенциальной деформации,
Из рис. 18.1 имеем теперь с учетом соотношений (18.33)- (18.36) и (11.51), «размазывая» силу по полосе периода,
Таким образом, получено первое из следующих выводимых одинаково выражений для усилий, отвечающих семейству малорастяжимых нитей:
Для двух равнонаклоненных семейств волокон
Сопоставление полученных выражений с (18.27) при показывает, что при переходе от нерастяжимых волокон к малорастяжимым (равнонаклоненным) следует провести замены: