Главная > Вибрации в технике, Т. 1. Колебания линейных систем
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6. СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ И ПОЛЕЙ

Методы моделирования случайных процессов и полей. Метод статистического моделирования (метод Монте-Карло) [18, 41, 53, 138] применительно к моделированию на ЭВМ случайных процессов и полей заключается в решении задачи воспроизведения дискретных последовательностей, имитирующих непрерывные случайные функции с заданными вероятностными характеристиками.

Ограничимся рассмотрением наиболее употребительных алгоритмов моделирования стационарных гауссовских скалярных процессов и полей. Будем считать все рассматриваемые процессы и поля центрированными.

Существуют два типа алгоритмов, при помощи которых на ЭВМ могут вырабатываться дискретные реализации случайного процесса Алгоритмы первого типа предусматривают вычисление дискретной последовательности значений т. е. значений реализаций процесса в совокупности заранее выбранных моментов времени Шаг дискретизации обычно принимается постоянным: тогда из стационарности процесса следует стационарность последовательности

В основе алгоритмов этого типа положено линейное преобразование стационарной последовательности независимых гауссовских чисел с параметрами в последовательность коррелированную по заданному закону

где корреляционная функция моделируемого процесса. При этом оператор соответствующего линейного преобразования записывается или в виде скользящего суммирования с весом

или в виде рекуррентного уравнения типа

Вид корреляционной функции воспроизводимого при помощи соотношений (49), (50) случайного процесса определяет набор значений коэффициентов [18].

Ко второму типу относятся алгоритмы, основанные на представлении моделируемых процессов в виде разложений

где некоторая система детерминистических функций; случайный вектор. При этом моделирование случайного процесса сводится к воспроизведению реализаций векторов и последующему вычислению значений по

формуле (51). Алгоритмы моделирования случайных векторов в рамках корреляцион ной теории можно найти, например, в [18, 31].

Целью статистического моделирования случайных полей является воспроизведение совокупности реализаций значений поля в дискретных точках

В дальнейшем не будем делать формального различия между пространственными координатами и временем и ограничимся случаем однородных случайных полей. Алгоритмы моделирования случайных полей, как правило, являются обобщением соответствующих алгоритмов моделирования случайных процессов на случай переменных.

Моделирование гауссовского белого шума. При статистическом моделировании случайных процессов и полей возникает необходимость в моделировании стационарного дельта-коррелированиого гауссовского процесса (белого шума интенсивности или его многомерного аналога На ЭВМ можно воспроизводить только усеченный белый шум с конечной дисперсией, спектральная плотность и корреляционная функция которого приведены в табл. 1 Параметр при моделировании подбирается таким образом, чтобы последовательность была некоррелированной. Это условие будет выполняться, если выбрать где шаг дискретизации. Моделирующий алгоритм при этом имеет вид [18]

Метод скользящего суммирования для моделирования случайных процессов. Алгоритм (49) позволяет воспроизводить на ЭВМ последовательности сколь угодно большой длины, которые с самого начала обладают свойством стационарности. Весовые коэффициенты могут быть вычислены различными способами. Эффективным является способ, основанный на разложении в ряд Фурье спектральной плотности моделируемого процесса. Преобразование (49) при этом берется в виде

а коэффициенты

Шаг дискретизации и число членов ряда выбираются из условия

где — допустимая погрешность;

Моделирование стационарных случайных процессов с дробно-рациональной спектральной плотностью. Для моделирования случайных процессов с дробно-рациональной спектральной плотностью (см. табл. 1, процессы № 3, 4, 7, 8) вида

где полиномы относительно порядка соответственно эффективным является алгоритм типа (50). Спектральная плотность последовательности

может быть приведена к виду

где

Коэффициенты используются в рекуррентных уравнениях (50). Соотношения (50) позволяют получать дискретные реализации случайных процессов сколь угодно большой длины. Начальные условия в (50) при вычислении первых значений последовательности можно выбрать произвольными (например, нулевыми). Вследствие этого возникает переходный процесс, в пределах которого начальный участок вырабатываемой реализации будет искажен. Величина этого участка реализации зависит от корреляционных свойств моделируемого процесса.

Моделирование случайных процессов с использованием канонического разложения. Для стационарных гауссовских случайных процессов справедливо разложение, аналогичное (19):

где - независимые и стохастически ортогональные случайные функции. Принимая, что при и заменяя интеграл конечной суммой, получим [18]

Здесь гауссовские случайные величины со следующими вероятностными характеристиками:

Число членов ряда (58) выбирается из условия

Наряду с (58) можно использовать разложение

Здесь случайные величины с совместной плотностью вероятности

Реализации, получаемые при помощи выражений (58), (59), являются периодическими следовательно, свойством эргодичности не обладают. Общее достоинство разложений (58) и (59) — простота алгоритма моделирования, а недостаток необходимость учитывать большое число членов ряда.

Разложения (58) и (59) удобно использовать для получения дискретных реализаций случайных процессов в неравноотстоящих точках.

Другие методы моделирования случайных процессов. Во многих случаях эффективным оказывается метод моделирования, основанный на использовании разложения [138]

Здесь случайные величины с совместной плотностью вероятности

Согласно центральной предельной теореме распределение реализаций (60) при стремится к гауссовскому. Кроме того, при реализации будут асимптотически эргодическими по отношению к математическому ожиданию и корреляционной функции.

Наряду с (60) можно использовать разложение

Здесь случайные величины с совместной плотностью вероятности

Кроме того, Закон распределения величин можно принять равномерным на интервале (0,1), при этом их реализации моделируются при помощи соотношений

Здесь — случайные числа, равномерно распределенные на интервале (0,1), которые вырабатываются на ЭВМ с помощью программных датчиков. Моделирование реализаций выполняют одним из методов моделирования случайных величии с заданным законом распределения. Соответствующие алгоритмы можно найти, например, в [18, 31].

В табл. 2 приведены наиболее распространенные типы корреляционных функций стационарных случайных процессов и соответствующие им моделирующие алгоритмы.

Методы скользящего суммирования для моделирования случайных полей. Алгоритмы этого типа связаны с преобразованием однородного дельта-коррелированного поля в поле с заданной корреляционной функцией Это преобразование имеет вид

Функция Грина находится из уравнения

(см. скан)

Дискретные реализации поля воспроизводятся при помощи формулы скользящего суммирования

Здесь — константа, определяемая выбором шага дискретизации; — дискретные значения поля реализации которого воспроизводятся по формуле типа (52):

Практически суммирование в (63) производят по всем значениям при которых слагаемые не являются пренебрежимо малыми.

Другие методы моделирования случайных полей. Эффективные алгоритмы моделирования случайных полей основаны на разложениях типа (58), (59) и (60), (61), обобщенных на случай переменных [138]. В качестве примера рассмотрим разложение однородного гауссовского случайного поля в виде

Здесь случайные величины; гауссовские случайные волновые векторы. Величины удовлетворяют условиям

Совместную плотность вероятности величин и волновых векторов к,- можно представить в виде

где

Для моделирования поля согласно (65) необходимо для каждой реализации получить значений случайных величин значений компонент волновых векторов получении реализаций могут быть использованы соотношения, аналогичные (62). Для получения реализаций компонент волнового вектора необходимо воспользоваться алгоритмами моделирования гауссовских случайных векторов. Соответствующие алгоритмы можно найти в [18].

Применение стандартных программ. В математическом обеспечении ЭВМ серии для образования случайных чисел предназначены подпрограммы и

Подпрограмма вычисляет равномерно распределенные случайные действительные числа на интервале и случайные целые числа на интервале (0,231). Каждое обращение использует для ввода целое случайное число. В результате выдаются новые целое и действительное случайные чнсла. При первом обращении к подпрограмме параметр IX должен содержать некоторое целое нечетное число с девятью меньшим числом цифр. При последующих обращениях IX должен быть равен предшествующему значению вычисленному этой подпрограммой. Параметр образованное равномерно распределенное случайное чнсло.

Подпрограмма вычисляет гауссовские случайные числа с заданным средним и средним квадратнческим отклонением При первом обращении параметр IX должен содержать некоторое целое нечетное число с девятью или меньшим числом цнфр. После этого IX будет содержать равномерно распределенное целое число, полученное в ходе выполнения подпрограммы и необходимое для следующего обращения. Параметр V — образованное гауссовское чнсло В ходе выполнения подпрограммы используется подпрограмма

1
Оглавление
email@scask.ru