Главная > Вибрации в технике, Т. 1. Колебания линейных систем
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4. СИСТЕМЫ, ВОЗБУЖДАЕМЫЕ БЕЛЫМИ ШУМАМИ

Предварительные замечания. Используя метод моментных функций и определение устойчивости по совокупности моментных функций, рассмотрим систему с двумя степенями свободы

где белый шум интенсивностью

Типичные матрицы В, составленные из коэффициентов имеют вид

При матрицы (35) соответствуют гамильтоновским системам, матрицы (36) — негамильтоновским.

Систему уравнений относительно моментных функций порядка векторного процесса запишем в матричной форме

Уравнения (37) могут быть исследованы численно, а в некоторых случаях аналитически.

Условия устойчивости имеют вид [72]

Устойчивость по моментам высоких порядков. Области асимптотической устойчивости могут быть получены относительно моментных функций различного порядка. Однако при повышении уровня замыкания изменяется определение стохастической устойчивости. Вопрос о том, насколько результат зависит от определения устойчивости, может быть исследован на примере стохастического аналога уравнения Матье — Хилла

Рис. 1. Границы областей устойчивости уравнения Матье-Хилла с коэффициентами, возбуждаемыми случайными процессами: а — в — частота, возбуждаемая белым шумом, экспоненциально-коррелированным процессом, процессом со скрытой периодичностью, частота и демпфирование, возбуждаемые: белыми шумами Ито (штриховая линия и Стратоновича (сплошная линия — экспоненциально-коррелированными процессами,

Результаты численного анализа [73] приведены на рис. 1, а. Увеличение порядка моментов ведет к монотонному уменьшению критических значений параметра Анализ показывает, что из устойчивости по отношению к моментам нечетного порядка не следует устойчивость при Для малых значений параметра демпфирования границы области устойчивости практически не зависят от

Системы с двумя случайными параметрическими воздействиями. Пусть возмущенное движение системы описывается дифференциальным уравнением

коэффициенту которою возмущены гауссозскими белыми шумами с корреляционной матрицей

Вместо зависимых шумов можно рассматривать линейные комбинации независимых белых шумов

Для двухмерного вектора коэффициенты сноса зависят от определения стохастического интеграла (по Ито или Стратоновичу).

Уравнения (37) для моментов можно получить разными способами. Отличные от нуля элементы матрицы А для системы стохастических уравнений в форме Стратоновича имеют вид

Трактуя белые шумы по получим

Коэффициенты определяют по формулам (43). На рис. 1,г приведены границы областей устойчивости, полученных для двух форм записи стохастического интеграла при

1
Оглавление
email@scask.ru