Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2. КЛАССИФИКАЦИЯ КОЛЕБАТЕЛЬНЫХ СИСТЕМПонятие об уравнении системы. Классификация колебательных систем связана со свойствами операторного уравнения, устанавливающего зависимость между вектором состояния системы
Здесь Для механических систем операторное уравнение (1), как правило, сводится к совокупности некоторых дифференциальных уравнений с граничными и начальными условиями, а также с дополнительными соотношениями типа уравнений связи. Системы с конечным числом степеней свободы и распределенные системы. Классифицировать колебательные системы можно по различным признакам. Одним из важнейших признаков является число степеней свободы системы, т. е. количество независимых числовых параметров, однозначно определяющих конфигурацию системы в любой фиксированный момент времени нуждается в определении. Здесь ограничимся указанием на то, что для механических систем под конфигурацией понимается положение всех точек системы в пространстве. Различают системы с конечным и бесконечным числом степеней свободы. В последнем случае множество степеней свободы может быть либо счетным, либо континуальным. Системы, обладающие континуальным множеством степеней свободы, называют распределенными (континуальными). Число степеней свободы зависит от характера идеализации реальной системы. Упругие системы с распределенной массой являются распределенными системами; заменяя распределенную массу конечным числом сосредоточенных масс, получим систему с конечным числом степеней свободы. С математической точки зрения колебания систем с конечным числом степеней свободы описываются обыкновенными дифференциальными уравнениями; колебания распределенных систем — дифференциальными уравнениями в частных производных. Математическое описание весьма широкого и наиболее важного для приложений класса распределенных систем может быть сведено к бесконечным системам обыкновенных дифференциальных уравнений. Этот класс распределенных систем эквивалентен, таким образом, системам с бесконечным счетным числом степеней свободы. Приближенная трактовка последних приводит к системам с конечным числом степеней свободы. Линейные и нелинейные системы. Принцип суперпозиции. Система называется линейной, если ее оператор является линейным, т. е. удовлетворяет условию
для любых допустимых законов изменения состояния Стационарные и нестационарные системы. Если свойства системы не изменяются на данном отрезке времени, то систему называют стационарной на этом отрезке. Отрезком времени, в частности, может быть вся числовая ось Автономные и неавтономные системы. В операторном уравнении (1) для автономной системы следует положить Консервативные и неконсервативные системы. Система называется консервативной, если ее полная механическая энергия остается постоянной при колебаниях. В противном случае система называется неконсервативной. В свою очередь, среди неконсервативных систем могут быть выделены системы, обладающие определенными характерными свойствами. Так, система называется диссипативной, если полная механическая энергия при любом движении соответствующей автономной системы убывает. Систему называют автоколебательной, если она стационарна и автономна и если при определенных условиях в ней возможно самовозбуждение колебаний. Автоколебательные системы характеризуются наличием в них источиика энергии неколебательной природы, причем поступление энергии регулируется движением самой системы.
|
1 |
Оглавление
|