Главная > Вибрации в технике, Т. 1. Колебания линейных систем
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава VII. ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ

1. ОБЩИЕ СВЕДЕНИЯ

Предварительные замечания. Понятие о параметрически возбуждаемых колебаниях было введено в гл. I. В отличие от вынужденных колебаний параметрически возбуждаемые (параметрические) колебания поддерживаются за счет изменения параметров системы. Наиболее часто встречаются колебания с периодическим параметрическим возбуждением, которые описываются дифференциальными уравнениями с периодическими коэффициентами. В этой главе рассматриваются колебания, возбуждаемые периодическими параметрическими воздействиями.

Примеры параметрически возбуждаемых колебаний в машиностроении. Параметрические колебания часто встречаются в задачах динамики механизмов и машин. Вал, сечение которого имеет неодинаковые главные жесткости при изгибе, может испытывать незатухающие поперечные колебания даже в том случае, когда он полностью уравновешен. Причиной поперечных колебаний является периодическое (при постоянной угловой скорости) изменение изгибных жесткостей относительно неподвижных осей. В неподвижной системе координат поперечные колебания вала описываются дифференциальными уравнениями с периодическими коэффициентами. Если использовать координатную систему, которая вращается вместе с валом, то придем к дифференциальным уравнениям с постоянными коэффициентами. Поэтому в данном примере изгибные колебания можно трактовать и как параметрически возбуждаемые колебания, и как автоколебания. Для вала, который может совершать поперечные колебания только в одной плоскости, причиной поперечных колебаний является периодическое изменение изгибной жесткости вала в этой плоскости. Примером системы с периодически изменяющейся приведенной массой служит шатунно-кривошипный механизм. Параметрическое возбуждение колебаний возможно во многих системах, где движение передается через упруго деформируемые звенья, например, в спарниковой передаче в локомотивах.

Исследование устойчивости периодических движений в нелинейных системах, как правило, также приводит к линейным дифференциальным уравнениям с

периодическими коэффициентами. Применительно к конкретным физическим и техническим объектам неустойчивость невозмущенных движений обычно может быть истолкована как параметрическое возбуждение колебаний (и наоборот). Некоторые из рассмотренных выше примеров также можно интерпретировать как неустойчивость установившихся периодических движений.

Дифференциальные уравнения параметрических колебаний. Уравнения параметрических колебаний линейных систем с конечным числом степеней свободы в общем случае могут быть представлены в виде

где — матрица-столбец обобщенных координат; и квадратные матрицы, элементы которых — действительные функции времени. Матрица при всех является положительно определенной. На матрицы это ограничение не накладывают. Если не оговорено, то все коэффициенты уравнения (1) — непрерывные периодические функции времени с периодом Т:

Соответствующую этому периоду частоту называют частотой параметрического возбуждения или частотой возбуждения.

Вводя, как и в гл. V, матрицу-столбец фазовых переменных, запишем уравнение (1) в нормальной форме:

Здесь матрица размерностью

При периодическом параметрическом возбуждении

Понятие о параметрических резонансах. Уравнение (1) имеет тривиальное решение которое отвечает невозмущенному равновесию или невозмущенному периодическому движению системы. Пусть коэффициенты уравнений зависят от некоторых параметров, характеризующих свойства параметрического воздействия и (или) системы. При некоторых значениях параметров решение может оказаться неустойчивым. Это означает, что имеет место параметрическое возбуждение колебаний механической системы. Множества точек, соответствующих неустойчивости, как правило, образуют области в пространстве параметров, которые называют областями неустойчивости (областями динамической неустойчивости) механической системы. Если параметрическое воздействие — периодическое и если среди варьируемых параметров содержатся частоты параметрического воздействия, то особый интерес представляет нахождение частотных соотношений, при которых наблюдается наиболее интенсивное параметрическое возбуждение. Эти частотные соотношения, как и возбуждаемые при этих соотношениях колебания, называют параметрическими резонансами.

1
Оглавление
email@scask.ru