§ 7. Группа симметрии тетраэдра Td
Кроме семи осей симметрии правильный тетраэдр имеет шесть плоскостей симметрия. К 12 вращениям, при которых тетраэдр переходит в себя (и которые отвечают, как мы видели, четным подстановкам его вершин), добавим одну из симметрий, например, симметрию относительно плоскости
(рис. 35) — ей соответствует (нечетная) подстановка
вершин тетраэдра. Если умножить эту симметрию на каждый из 12 поворотов, при которых тетраэдр переходит в себя, мы получим еще 12 преобразований, отвечающих нечетным подстановкам вершин. Среди них- будут 6 «чистых» симметрий и 6 произведений поворота и симметрии. Кроме этих 24 преобразований, не существует никаких ортогональных преобразований, при котбрых тетраэдр
переходит в себя (в частности — никаких вращений, кроме рассмотренных в § 5), так как каждое такое преобразование отвечает определенной подстановке его вершин и, значит, совпадает с одним из уже определенных преобразований. Таким
Рис. 35.
образом, группа симметрии тетраэдра
изоморфна симметрической группе
, значит, она, изоморфна группе вращений куба 0. Поэтому эта группа тоже сйстоит из пяти классов сопряженных элементов, содержащих 6, 3, 8 и 6 элементов. Найдем, как распределяются элементы группы
по этим классам.
В группе
класс из трех элементов образуют, очевидно, повороты вокруг осей второго порядка
Класс из 8 элементов состоит из всех поворотов вокруг осей третьего порядка:
повороты вокруг осей третьего порядка на углы
в группе Т не сопряжены, а в группе
они оказываются сопряженными, так как если
— симметрия, скажем, относительно плоскости
поворот относительно оси
лежащей в этой плоскости на угол а, то
есть поворот вокруг той же самой оси
на угол — а. В нашем случае это доказывается следующим равенством:
и значит,
Далее, 6 симметрий относительно плоскостей вида
очевидно, сопряжены между собой (эти плоскости «эквивалентны» — при поворотах переходят друг в друга), они образуют отдельный класс; обозначим его
Остальные 6 преобразований — произведения поворота и симметрии тоже, следовательно, образуют отдельный класс