Главная > Теория автоматического управления и регулирования
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4.5. Анализ точности САУ в установившихся режимах с помощью коэффициентов ошибок

Как отмечалось, ошибка САУ в установившемся режиме является одним из показателей качества системы. В случае медленно изменят ющихся задающего или возмущающего воздействий ошибку системы в установившемся режиме удобно определять с помощью коэффициентов ошибок.

Ошибка следящей системы вызываемая изменением задающего воздействия а в соответствии с (2.61), может быть определена

с помощью передаточной функции системы по ошибке

Предположим, что можно разложить в степенной ряд относительно сходящийся, по крайней мере, при малых значениях

Тогда, согласно (4.22), можно записать

Этот ряд сходится в окрестности точки Поэтому будет сходиться и оригинал ряда (4.24) при т. е. ряд, в который можно разложить ошибку системы в установившемся режиме:

Отсюда видно, что в общем случае ошибка системы в установившемся режиме состоит из ряда слагаемых, пропорциональных как входному сигналу так и его производным. Слагаемые, входящие в ряд ошибок, обычно называют так: — ошибкой по положению (по сигналу); — ошибкой, вызываемой скоростью; — ошибкой, вызываемой ускорением задающего воздействия и т.д., а постоянные — коэффициентами ошибок. Ошибки в установившихся режимах, вызываемые изменяющимся задающим воздействием, называются динамическими. Зная коэффициенты ошибок и закон изменения задающего воздействия а с помощью формулы (4.25) можно определить ошибку системы в установившемся режиме.

Коэффициенты ошибок выразим через параметры системы. Передаточная функция системы по ошибке связана с передаточной функцией разомкнутой системы выражением

Учитывая, что передаточная функция системы с астатизмом порядка в разомкнутом состоянии имеет вид

где передаточная функция по ошибке в соответствии с выражением (4.26) будет равна:

где коэффициенты с равны сумме коэффициентов при одинаковых степенях

При (статическая система):

При (астатическая система с астатизмом порядка):

На основании (4.23) и (4.27) можно записать

откуда

Раскрывая скобки в правой части полученного выражения и приравнивая коэффициенты правой и левой частей при одинаковых степенях можно получить систему уравнений, из которой затем можно определить коэффициенты ошибок через коэффициенты с и о уравнения САУ. Значения коэффициентов ошибок будут различными для систем с различными порядками астатизма. Найдем сначала коэффициенты ошибок для статической системы

Приравнивая члены левой и правой частей выражения (4.31) при одинаковых степенях и учитывая, что получаем следующую систему уравнений:

из которой можно определить коэффициенты ошибок для статической системы. Из первого уравнения находим или, если принять во внимание, что а также, что для случая в соответствии с формулой то

Из второго уравнения находим

Аналогично можно определить и другие коэффициенты ошибок.

Таблица 4.3. (см. скан) Коэффициенты ошибок статической и астатических систем

Коэффициенты ошибок астатической системы с астатизмом первого порядка могут быть найдены из системы уравнений, полученной из выражения (4.31) приравниванием коэффициентов его левой и правой частей при одинаковых степенях при учете, что

Из первого уравнения из второго уравнения с учетом (4.29):

Аналогично определяются остальные коэффициенты ошибок.

В табл. 4.3 приводятся несколько первых коэффициентов ошибок Для статической и астатических систем первого и второго порядков астатизма. В качестве примера определим установившиеся ошибки САУ, обладающих различными порядками астатизма при разных задающих воздействиях.

Пример 3. Задающее воздействие изменяется по закону ступенчатой функции а (табл. 4.4). Определить установившиеся ошибки в следящих системах, имеющих порядок астатизма

1. Определяем производные

Таблица 4.4. Характер реакций систем на различные задающие воздействия

2. С учетом (4.34) выражение (4.25) для ошибки принимает вид

т. е. при ступенчатом воздействии появляется только ошибка по положению.

3. Для определения в статической системе подставляем из табл. 4.3 значение в формулу (4.35): т. е. при ступенчатом задающем воздействии в статической системе возникает постоянная ошибка по положению. Эта ошибка при данном будет тем меньше, чем больше системы.

4. Установившиеся ошибки в астатических системах с астатизмом порядка и с астатизмом 2-го порядка т. е. ошибка по положению, а следовательно, и вся установившаяся ошибка в астатических системах при ступенчатом задающем воздействии равна нулю.

Реакции следящих систем с порядками астатизма на ступенчатое задающее воздействие изображены в табл. 4.4.

Пример 4. Задающее воздействие изменяется по закону а (см. табл. 4.4). Определить в следящих системах с порядком астатизма

1. Определяем производные от

Учитывая, что вторая и более высокие производные от а равны нулю, формула (4.25) примет вид

т. е. при линейно возрастающем задающем воздействии возможно появление в системе динамических ошибок по положению и по скорости.

3. Для определения в статической системе подставляем из табл. 4.3 значения в формулу (4.36):

т. е. в статической системе имеются ошибки по положению и по скорости. Ошибка

по положению при изменении задающего воздействия с постоянной скоростью возрастает во времени и поэтому системы стремится к бесконечности.

4. Установившаяся ошибка астатической системы с астатизмом порядка

т. е. в системе с астатизмом порядка ошибка по положению равна нулю (так как Скоростная ошибка постоянна. Она пропорциональна скорости изменения задающего воздействия и обратно пропорциональна коэффициенту усиления системы в разомкнутом состоянии Выражение (4.37) для скоростной ошибки, полученное с помощью коэффициентов ошибок, совпадает с ранее полученной формулой (2.75).

5. Установившаяся ошибка астатической системы с астатизмом порядка т. е. в системе с астатизмом порядка при изменении с постоянной скоростью равна нулю. Это объясняется тем, что коэффициенты ошибок , следовательно, ошибка по положению и по скорости в этой системе равны нулю.

Реакции следящих систем на задающее воздействие а изображены в табл. 4.4.

Пример 5. Задающее воздействие где — начальное значение — начальное значение скорости изменения а — ускорение а Определить в следящих системах с порядками астатизма

1. Определяем производные от а

2. С учетом (4.38) выражение (4.25) принимает вид

т. е. при равноускоренном изменении задающего воздействия возможно появление в системе динамических ошибок по положению, скоростной ошибки и ошибки по ускорению.

3. Установившиеся динамические ошибки:

в статической системе

в астатической системе с астатизмом порядка

т. е. при равноускоренном изменении задающего воздействия в системе с астатизмом порядка растет во времени до бесконечности;

в астатической системе с астатизмом порядка постоянна. Она пропорциональна ускорению и обратно пропорциональна системы.

Реакции систем на задающее воздействие изображены в табл. 4.4,

1
Оглавление
email@scask.ru