ГЛАВА 8. Импульсные системы автоматического управления
8.1. Понятие о дискретных системах, классификация дискретных систем
Определение дискретной системы. Наряду с непрерывными системами, рассмотрению которых посвящены предыдущие главы, в технике широко применяются дискретные САУ. Система автоматического управления называется дискретной, если выходная величина какого-либо
Рис. 8.1. Функциональная схема дискретной САУ.
из ее элементов имеет дискретный характер. Преобразование непрерывных сигналов в дискретные выполняется дискретным элементом.
Дискретная САУ схематически может быть изображена в виде соединения дискретного элемента и непрерывной части (рис. 8.1). Дискретный элемент дает на выходе ту или иную последовательность импульсов, которая при прохождении через непрерывную часть за счет ее сглаживающих свойств преобразуется в непрерывный сигнал. Последний, проходя через непрерывную обратную связь, сравнивается с входным сигналом системы в элементе сравнения ЭС и получающийся при этом сигнал ошибки воздействует на дискретный элемент. Дискретный элемент или специально вводится в систему с целью упрощения ее конструкции, улучшения некоторых динамических характеристик, или является необходимым элементом в силу особенностей технических средств (например, радиолокационная станция, использующая импульсный метод радиолокации, является импульсным элементом и входит в состав радиолокационных следящих систем).
Классификация дискретных систем в зависимости от вида квантования сигнала. В дискретных системах происходит преобразование дискретной информации. Различают дискретность сигнала по уровню и дискретность по времени.
Сигналы, дискретные по уровню, получаются в результате квантования сигнала по уровню, когда непрерывный сигнал заменяется ближайшими к ней фиксированными дискретными значениями в произвольные моменты времени (рис. 8.2, а).
Квантование по уровню в простейшем случае осуществляется релейным элементом. Выходная величина релейного элемента может принимать конечное число фиксированных уровней, равное обычно двум или трем. Если статическая характеристика релейного элемента имеет вид кривой 1 (рис. 8.2, г), то при входном сигнале, изменяющемся по кривой 2, выходная величина (кривая 3) будет изменяться дискретно (скачком) всякий раз (в моменты когда входной сигнал проходит через значение срабатывания и отпускания реле — через уровень квантования. Как видно из рисунка, выходная величина в приведенном примере может принимать три фиксированных значения.
Примером систем, в которых осуществляется квантование по уровню, могут служить релейные системы автоматического управления.
Рис. 8.2. Различные виды квантования сигнала: а — по уровню; б - по времени; в — по уровню и по времени; г - квантование по уровню с помощью релейного элемента.
Сигналы, дискретные по времени, получаются в результате квантования сигнала по времени, т. е. фиксации дискретных моментов времени рис. 8.2, б), при которых уровни входного сигнала могут принимать произвольные значения соответственно). Квантование по времени осуществляется импульсным элементом и применяется в импульсных системах.
Наряду с раздельным квантованием по уровню и времени во многих случаях применяется одновременное квантование по уровню и по времени, когда непрерывный сигнал заменяется дискретными по уровню значениями, ближайшими к значениям непрерывного сигнала в дискретные моменты времени (рис. 8.2, в). Обычно такой дискретный сигнал в результате кодирования преобразуется в цифровой код и применяется в цифровых системах (рис. 8.3). Непрерывное задающее воздействие а с помощью аналогово-цифрового преобразователя квантуется по времени, по уровню, кодируется, т. е. преобразуется в цифровую форму а Управляемая величина с помощью также преобразуется в цифровую форму Последовательности чисел а сравниваются между собой в ЭС и их разность (сигнал рассогласования) подается на цифровое вычислительное устройство (ЦВУ). Последнее осуществляет функциональное
Рис. 8.3. Функциональная схема цифровой САУ.
преобразование последовательности чисел в соответствии с заложенной программой. Выходной дискретный сигнал ЦВУ преобразуется в непрерывный с помощью цифро-аналогового преобразователя (ЦАП) D/A и воздействует на непрерывную часть НЧ системы. В отличие от рассмотренной системы, содержащей непрерывную часть, имеются чисто дискретные системы, состоящие только из цифровых элементов.
Достоинства и недостатки дискретных систем. С выхода дискретного элемента информация о входном сигнале поступает лишь в дискретные моменты времени, что приводит к некоторой потере информации. В цифровых системах процессы преобразования сигналов обычно происходят не в реальном масштабе времени, вследствие чего вносится определенное запаздывание. Эти факторы являются причиной понижения точности дискретных САУ. Однако дискретные системы обладают рядом преимуществ перед непрерывными системами:
1. С помощью одной дискретной САУ (автоматического управляющего устройства) можно осуществлять управление процессами в нескольких управляемых объектах поочередным подключением этих объектов к АУУ или обеспечивать управление многими параметрами одного технологического процесса (объекта).
2. Дискретные элементы обеспечивают более высокую точность преобразования и передачи информации. В цифровых системах имеется возможность реализации сложных алгоритмов управления. Благодаря этому точность дискретных, в частности цифровых, САУ может быть выше точности непрерывных систем.
3. Дискретные системы во многих случаях оказываются проще в конструктивном отношении аналогичных непрерывных систем.