Главная > Цифровая обработка сигналов (Оппенгейм А. В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

11.3.3. ОБЩИЕ ВЫРАЖЕНИЯ ДЛЯ ДИСПЕРСИИ

Предыдущие рассуждения касались оценки спектра белого шума. Если рассматриваемый процесс гауссов, но не белый, то анализ значительно затрудняется. При расчете ковариации между спектральными выборками в этом более общем случае полезно придерживаться эвристического подхода и вывести приближенное выражение. Мы будем придерживаться этого подхода; более строгий вывод дан Дженкинсом и Ваттсом [5]. Основой для данного эвристического подхода является то, что небелая (окрашенная) последовательность может генерироваться при воздействии белого шума на линейную систему. Спектральная плотность мощности выходного шума равна произведению спектральной плотности на входе на квадрат модуля частотной характеристики системы. Рассмотрим выборку небелого шума длины Конечно неверно считать, что отрезок небелого шума получается путем фильтрации отрезка белого шума линейной системой из-за наличия переходных процессов в начале и в конце отрезка. Тем не менее если длина выборки велика по сравнению с длительностью импульсной характеристики фильтра, то кажется вероятным, что выборка небелого шума может быть аппроксимирована таким образом.

Теперь рассмотрим небелый гауссов процесс со спектральной плотностью мощности Пусть обозначает отрезок небелого шума, состоящий из точек, и пусть обозначает такой же отрезок белого шума с единичной дисперсией. Тогда наша аппроксимация состоит в том, что является результатом обработки линейной системой, квадрат модуля частотной характеристики которой равен Обозначая через периодограмму окрашенного шума, а через - периодограмму белого шума, имеем

и так как , то

Следовательно, используя (11.40), ковариацию периодограммы можно приближенно выразить в виде

Если вычислить (11.43) при частотах, разнесенных на величину, кратную то снова убедимся, что выборки периодограммы на этих частотах некоррелированны. Кроме того, дисперсия периодограммы равна

так что при увеличении дисперсия становится пропорциональной квадрату спектра. Таким образом, в общем случае периодограмма не является состоятельной оценкой и можно ожидать, что она будет сильно флуктуировать около истинного значения спектра. Хотя результаты, выведенные в этом параграфе, были основаны на допущении, что плотности вероятностей являются гауссовыми, они качественно справедливы и для более широкого класса распределений.

1
Оглавление
email@scask.ru