Главная > Курс физики (Геворкян Р. Г.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ПРАВИЛА КИРХГОФА

Для расчета сил токов в различных участках сложных разветвленных цепей (например, мостика Уитстона, рис. 111.32) по заданным сопротивлениям этих участков и э. д. с. источников тока пользуются правилами Кирхгофа. Эти правила можно вывести на основе закона сохранения заряда и законов Ома (см. формулы (2.24) и (2.12)). Предполагается, что токи в цепи — установившиеся, т. е. силы токов, сопротивления и разности потенциалов в различных участках цепи с течением времени не изменяются. Окружим какую-нибудь точку разветвления, например А у замкнутой поверхностью (сферой); тогда для постоянства потенциала точки А необходимо, чтобы количество электричества, ежесекундно вносимое в эту сферу через одни проводники, было равно количеству электричества, выходящего из этой области по другим проводникам за то же время:

алгебраическая сумма сил токов должна равняться нулю, (первое правило Кирхгофа):

Рис. III.32

Это утверждение, очевидно, применимо для любой точки цепи с постоянными токами; если в цепи имеется точек разветвления, то, применяя условие (2.28), можно написать уравнений. В частности, в мостике (см. рис. 111.32) имеется четыре точки разветвления, однако число неизвестных величин — сил токов — шесть. Поэтому для нахождения этих величин необходимо составить еще два уравнения.

Для использования законов Ома выберем в цепи какую-нибудь замкнутую совокупность проводников, например в которой нет источника тока; напишем для нее очевидное тождество:

потенциалы начальных и конечных точек отдельных участков контура. На основании закона Ома, для каждого из участков цепи Однако следует учесть, что в этой записи предполагается движение положительных зарядов от первой точки ко второй, т. е. от большего потенциала к меньшему Если же мы будем вычитать из меньшего потенциала больший, то сила тока получится отрицательной, т. е. Учитывая это обстоятельство,

заменим разности потенциалов в выражении (2.29) через произведения сил токов на соответствующие сопротивления. Так как то

Тогда выражение (2.29) перепишется в виде

т. е. алгебраическая сумма падений напряжения в замкнутом контуре, не содержащем источника тока, равна нулю:

Рассмотрим теперь замкнутый контур, содержащий источник тока, например Напишем опять очевидное тождество:

Согласно изложенному выше . Допустим, тогда Для определения разности потенциалов между полюсами источника тока воспользуемся определением электродвижущей силы [см. формулу (2.22)], откуда

Здесь предполагается, что внутри источника положительные заряды движутся от точки с меньшим потенциалом к точке с большим потенциалом Так как в нашем случае то

Подставим в выражение (2.30) найденные значения разностей потенциалов:

Полученный результат означает, что в замкнутом контуре, содержащем источник тока, алгебраическая сумма падений напряжений равна э. д. с. источника тока.

Применяя те же рассуждения для более общего случая, когда в контуре имеется несколько источников тока и они по-разному включены, можно получить следующий результат:

алгебраическая сумма падений напряжения в замкнутом контуре равна алгебраической сумме э. д. с. источников тока, находящихся в этом контуре (второе правило Кирхгофа).

При применении этого правила обычно выбирается какое-нибудь направление обхода и соблюдается следующее условие знаков:

1) если токи текут по направлению обхода, то соответствующие произведения берут со знаком плюс, в противном случае — со знаком минус;

2) если линия обхода направлена внутри источника тока от отрицательного полюса к положительному, то его э. д. с. берется со знаком плюс, в противном случае — со знаком минус.

При расчете сложных цепей чаще всего задаются только сопротивления отдельных участков и э. д. с. источников тока; направления и силы токов требуется определить. Для этого предварительно намечаются направления токов и решается система уравнений:

Если после расчета силы токов в каких-нибудь участках получаются отрицательными, то это означает, что направление токов в этих участках обратно намеченному до расчета.

1
Оглавление
email@scask.ru