Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Часть II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКАГлава 1. ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ И ТЕРМОДИНАМИКИ§ 1. ТЕПЛОВОЕ ДВИЖЕНИЕАтомы и молекулы, из которых состоят различные вещества, находятся в состоянии непрерывного теплового движения. Первой особенностью теплового движения является его хаотичность; ни одно направление движения молекул не выделяется среди других направлений. Поясним это: если проследить за движением одной молекулы, то с течением времени вследствие столкновений с другими молекулами величина скорости и направление движения этой молекулы изменяются совершенно беспорядочно; далее, если в какой-нибудь момент времени зафиксировать скорости движения всех молекул, то по направлению эти скорости оказываются равномерно разбросанными в пространстве, а по величине — имеют самые разнообразные значения. Второй особенностью теплового движения является существование обмена энергией между молекулами, а также между различными видами движения; энергия поступательного движения молекул может переходить в энергию их вращательного или колебательного движения и обратно. Обмен энергией между молекулами, а также между различными видами их теплового движения происходит благодаря взаимодействию молекул (столкновениям между ними). На больших расстояниях силы взаимодействия между молекулами очень малы и ими можно пренебрегать; на малых расстояниях эти силы оказывают заметное действие. В газах молекулы большую часть времени пребывают на сравнительно больших расстояниях друг от друга; лишь в течение весьма малых промежутков времени, оказавшись достаточно близко друг к другу, они взаимодействуют между собой, изменяя скорости своих движений и обмениваясь энергиями. Такие кратковременные взаимодействия молекул называются столкновениями. Различают два вида столкновений между молекулами: 1) столкновения, или удары, первого рода, в результате которых изменяются только скорости и кинетические энергии соударяющихся частиц; состав или структура самих молекул не испытывают никаких изменений; 2) столкновения, или удары, второго рода, в результате которых происходят изменения внутри молекул, например изменяется их состав или относительное расположение атомов внутри этих молекул. При этих столкновениях часть кинетической энергии молекул затрачивается на совершение работы против сил, действующих внутри молекул. В некоторых случаях, наоборот, может выделиться некоторое количество энергии за счет уменьшения внутренней потенциальной энергии молекул. В дальнейшем мы будем иметь в виду только столкновения первого рода, происходящие между молекулами газов. Обмен энергиями при тепловых движениях в твердых и жидких телах является более сложным процессом и рассматривается в специальных разделах физики. Столкновения второго рода используются для объяснения электропроводности газов и жидкостей, а также теплового излучения тел.
Рис. 11.1 Для описания каждого вида теплового движения молекул (поступательного, вращательного или колебательного) необходимо задать ряд величин. Например, для поступательного движения молекулы необходимо знать величину и направление ее скорости. Для этой цели достаточно указать три величины: значение скорости
Для описания вращательного движения молекулы вокруг своей оси необходимо указать величину и направление угловой скорости вращения
где
Для описания колебательного движения атомов в молекуле необходимо сначала разделить это движение на простые колебания, происходящие вдоль определенных направлений. Сложное колебание удобно разложить на простые прямолинейные колебания, происходящие по трем взаимно перпендикулярным направлениям. Эти колебания независимы друг от друга, т. е. частоте и амплитуде колебаний в одном из этих направлений могут соответствовать любая частота и амплитуда колебаний в других направлениях. Если каждое из этих прямолинейных колебаний гармоническое, то его можно описать при помощи формулы
Таким образом, для описания отдельного прямолинейного колебания атомов необходимо задать две величины: частоту колебания со и амплитуду колебания Независимые друг от друга величины, определяющие состояние данной физической системы, называются степенями свободы этой системы. При изучении теплового движения в телах (для расчета энергии этого движения) определяют число степеней свободы каждой молекулы этого тела. При этом подсчитываются только те степени свободы, между которыми происходит обмен энергиями. Молекула одноатомного газа обладает тремя степенями свободы поступательного движения; двухатомная молекула имеет три степени свободы поступательного и две степени свободы вращательного движения (третья степень свободы, соответствующая вращению вокруг оси, проходящей через центры атомов, не учитывается). Молекулы, содержащие три атома и больше, обладают тремя поступательными и тремя вращательными степенями свободы. Если в обмене энергиями участвует и колебательное движение, то на каждое независимое прямолинейное колебание добавляют две степени свободы. Рассматривая раздельно поступательное, вращательное и колебательное движения молекул, можно найти среднюю энергию, которая приходится на каждую степень свободы этих видов движения. Рассмотрим сначала поступательное движение молекул: допустим,
Так же можно рассчитать средние энергии, приходящиеся на одну степень свободы вращательного евращ и колебательного еколеб движений. Если каждая молекула обладает
В теоретической физике (где разработаны основы молекулярно-кинетической теории) установлено, что средние энергии всех видов теплового движения молекул связаны с температурой, причем для разреженных газов с достаточным приближением можно полагать, что на каждую степень свободы поступательного и вращательного движений молекул в среднем приходится одна и та же энергия, равная
где
где сколько и на одну степень свободы поступательного или вращательного движения. При таких условиях можно очень просто рассчитать суммарную энергию беспорядочного движения частиц системы, содержащей
где
|
1 |
Оглавление
|