Главная > Курс физики (Геворкян Р. Г.)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДИФРАКЦИОННАЯ РЕШЕТКА

Продолжая рассуждения для пяти, шести щелей и т. д., можно установить следующее правило: при наличии щелей между двумя соседними максимумами образуется минимумов; разность хода лучей от двух соседних щелей для максимумов должна равняться целому числу X, а для минимумов — Дифракционный спектр от щелей имеет вид, показанный на рис Дополнительные максимумы, расположенные между двумя соседними минимумами, создают на экране весьма слабую освещенность (фон).

Основная часть энергии световой волны, прошедшей через дифракционную решетку, перераспределяется между главными максимумами, образующимися в направлениях где 3, называется «порядком» максимума.

Рис. IV.26

Очевидно, чем больше число щелей тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

Если свет, падающий на дифракционную решетку, состоит из двух монохроматических излучений с длинами волн и их главные максимумы расположатся в различных местах экрана. Для очень близких друг к другу длин волн (одноцветные излучения) максимумы на экране могут получиться настолько близко друг к другу, что сольются в одну общую светлую полосу (рис. IV.27, б). Если же вершина одного максимума совпадает или находится дальше (а) ближайшего минимума второй волны, то по распределению освещенности на экране можно уверенно установить наличие двух волн (или, как говорят, «разрешить» эти волны).

Выведем условие разрешимости двух волн: максимум (т. е. максимум порядка) волны получится, согласно формуле (1.21), под углом удовлетворяющим условию Предельное условие разрешимости требует, чтобы под этим же углом получился

минимум волны ближайшей к его максимуму (рис. IV.27, в). Согласно сказанному выше, для получения ближайшего минимума к разности хода следует прибавить дополнительно Таким образом, условие совпадения углов под которыми получаются максимум и минимум приводит к соотношению

Если больше, чем произведение числа щелей на порядок спектра то максимумы не будут разрешаться. Очевидно, если два максимума не разрешаются в спектре порядка, то они могут быть разрешены в спектре более высоких порядков. Согласно выражению (1.22), чем больше число интерферирующих между собой пучков и чем больше разность хода А между ними тем более близкие волны могут быть разрешены.

Рис. IV.27

У дифракционной решетки т. е. число щелей, велико, но порядок спектра который можно использовать для измерительных целей, мал; у интерферометра Майкельсона, наоборот, число интерферирующих пучков равно двум, но разность хода между ними, зависящая от расстояний до зеркал (см. рис. IV. 14), велика, поэтому порядок наблюдаемого спектра измеряется очень большими числами.

Угловое расстояние между двумя соседними максимумами двух близких волн зависит от порядка спектра и периода решетки

Период решетки можно заменить на число щелей приходящихся на единицу длины решетки:

Выше предполагалось, что лучи, падающие на дифракционную решетку, перпендикулярны ее плоскости. При наклонном падении лучей (см. рис. IV.22, б) нулевой максимум будет смещен и получится в направлении Допустим, что максимум порядка получается в направлении т. е. разность хода лучей и равна Тогда Так как при малых углы

близки друг к другу по величине, то следовательно,

где есть угловое отклонение максимума от нулевого. Сравним эту формулу с выражением (1.21), которую запишем в виде так как то угловое отклонение при наклонном падении оказывается больше, чем при перпендикулярном падении лучей. Это соответствует уменьшению периода решетки в а раз. Следовательно, при больших углах падения а можно получить дифракционные спектры от коротковолнового (например, рентгеновского) излучения и измерить их длины волн.

Рис. IV.28

Если плоская световая волна проходит не через щели, а через круглые отверстия малого диаметра (рис. IV.28), то дифракционный спектр (на плоском экране, расположенном в фокальной плоскости линзы) представляет собой систему чередующихся темных и светлых колец. Первое темное кольцо получается под углом удовлетворяющим условию

У второго темного кольца На долю центрального светлого круга, называемого пятном Эйри, приходится около 85% всей мощности излучения, прошедшей через отверстие и линзу; остальные 15% распределяются между светлыми кольцами, окружающими это пятно. Размеры пятна Эйри зависят от и фокусного расстояния линзы.

Дифракционные решетки, которые рассматривались выше, состояли из чередующихся «щелей», полностью пропускающих световую волну, и «непрозрачных полосок», которые полностью поглощают или отражают падающее на них излучение. Можно сказать, что в таких решетках коэффициент пропускания световой волны имеет только два значения: на протяжении щели он равен единице, а на протяжении непрозрачной полоски — нулю. Поэтому на границе межд щелью и полоской коэффициент пропускания скачкообразно изменяется от единицы до нуля.

Однако можно изготовить дифракционные решетки и с другим распределением коэффициента пропускания. Например, если на прозрачную пластинку (или пленку) нанести поглощающий слой с периодически изменяющейся толщиной, то вместо чередования совершенно

прозрачных щелей и совершенно непрозрачных полосок можно получить дифракционную решетку с плавным изменением коэффициента пропускания (в направлении, перпендикулярном щелям или полоскам). Особый интерес представляют решетки, у которых коэффициент пропускания изменяется по синусоидальному закону. Дифракционный спектр таких решеток состоит не из множества максимумов (как это показано для обычных решеток на рис. IV.26), а только из центрального максимума и двух симметрично расположенных максимумов первого порядка

Для сферической волны можно изготовить дифракционные решетки, состоящие из множества концентрических кольцевых щелей, разделенных непрозрачными кольцами. Можно, например, на стеклянную пластинку (или на прозрачную пленку) нанести тушью концентрические кольца; при этом центральный круг, охватывающий центр этих колец, может быть либо прозрачным, либо затушеванным. Такие дифракционные решетки называются «зонными пластинками» или решетками. У дифракционных решеток, состоящих из прямолинейных щелей и полосок, для получения отчетливой интерференционной картины было необходимо постоянство ширины щели и периода решетки; у зонных пластинок для этой цели должны быть рассчитаны необходимые радиусы и толщины колец. Зонные решетки также могут быть изготовлены с плавным, например синусоидальным, изменением коэффициента пропускания вдоль радиуса.

Categories

1
Оглавление
email@scask.ru