Глава III. КОЛЕБАНИЯ ПРУЖИН
В главе приняты следующие условные обозначения:
(см. скан)
1. ОБЩИЕ СВЕДЕНИЯ
Витые пружины (цилиндрические, фасонные, плоские, спиральные и др.), нагруженные внешними периодическими силами (реже — моментами), широко применяют в высокоскоростных и быстродействующих машинах, приборах и автоматических устройствах в качестве основных силовых (несущих) или вспомогательных элементов. Вредные, непредусмотренные вибрации пружин или потеря ими динамической устойчивости приводит к появлению паразитных колебаний рабочего органа машины, нарушению силового замыкания между отдельными ее звеньями, появлению дополнительных напряжений в материале и, как следствие, к уменьшению надежности машины вплоть до ее аварийного выхода из строя.
В практических расчетах встречаются прежде всего с задачами об определении частот свободных продольных, крутильных и поперечных колебаний, которые должны быть достаточно далеки от частоты возмущения или одна от другой; с расчетом ширины и расположения зон динамической неустойчивости и параметрических колебаний, а также взаимосвязанных нелинейных колебаний (биений); с вычислением динамических составляющих напряжений основных и дополнительных колебаний и т. д.
Роль демпфирования как ограничивающего фактора при колебаниях пружин минимальна, так как количественные характеристики внутреннего трения и потерь В конструкции малы.
Для решения вышеуказанных задач используют методы эквивалентных
характеристик (эквивалентного бруса) и тонкого винтового стержня. В первом случае пружину заменяют фиктивным брусом с характеристиками, приближенно совпадающими с действительными характеристиками пружины; такая замена справедлива для большинства пружнн
Методом эквивалентных характеристик были решены основные практические задачи [10, 12, 24, 25, 31, 34]. Однако в некоторых случаях (например, при исследовании колебаний пружин с а также при уточнении границ применимости метода эквивалентного бруса) витую пружину необходимо рассмотреть как тонкий пространственный стержень и использовать систему уравнений Кирхгофа-Клебша-Лява [11, 20]. Из этой группы следует отметить работы [18, 21, 27], в которых исследования доведены до числовых результатов.
Рис. 1
Экспериментальные методы, применяемые для исследования вибрации пружии, описаны в работах [16, 27, 28, 33].