Главная > Вибрации в технике, Т. 3. Колебания машин, конструкций и их элементов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. УСТОЙЧИВОСТЬ ВРАЩЕНИЯ ОДНОМАССОВОГО ЗОНТИЧНОГО РОТОРА В ПОЛЕ СИЛ ТЯЖЕСТИ

Динамика упругой гиросистемы существенно меняется в случае расположения центра масс выше точки опоры (см. рис. 2). При такой схеме возникает задача об устойчивости вертикального вращения обращенного гиромаятника с гибким валом и упругим элементом вблизи точки опоры [7, 15]. Ось неподвижной системы координат направлена вертикально вверх (см. рис. 2). Проекции на сферические оси силы приложенной к упругому зонтичному ротору в центре масс записаны в (3), если их взять с нижними знаками, а моменты, изгибающие ротор в плоскостях и определяются из (4). Причем для рассматриваемой задачи достаточно ограничиться линеаризованными выражениями

При сжатии упругого ротора продольной силой проекции прогибов на сферические плоскости удовлетворяют дифференциальным уравнениям (1) с нижними знаками, зависимостям (1а) при и граничным условиям (2). Все основные уравнения и характеристики движения этой колебательной системы приведены в п. 2.

Устойчивость вертикального вращения. Вертикальное положение оси симметрии гироскопа с гибким валом и центром масс выше точки опоры (зонтичного ротора) определяется стационарным решением

Необходимые условия устойчивости этого положения получаются из уравнений в вариациях для стационарного решения (20), которые полностью совпадают с однородной системой (8), а соответствующее им характеристическое уравнение имеет вид (10) при коэффициентах (12).

Из (9) следует необходимое условие устойчивости вертикального положения оси симметрии зонтичного ротора, а именно — вещественность всех четырех корней уравнения (10), взятого с коэффициентами (12).

Для уравнения (10) на основании правила Штурма указанное условие приводит к трем неравенствам:

причем

где определяются из (12).

Эти неравенства представляют собой необходимые условия устойчивости вертикального вращения зонтичного ротора.

В качестве примера рассматривается устойчивость вертикального положения оси такого ротора без упругого элемента при Коэффициенты (13) будут

где

В случае недеформируемой оси и при малых значениях удобно воспользоваться разложением

где числа Бернулли, равные и т. д.

В большинстве практически важных случаев поэтому вполне достаточно исследовать устойчивость в интервале

Подстановка коэффициентов (22) в (21) показывает, что первые два неравенства удовлетворяются при любых значениях а». В частности, функция обращается в квадратный полином относительно

У которого коэффициент при и свободный член положительны. В этом случае если но при этом условии дискриминант полинома (23) положителен. Значит, для любых вещественных значений со в рассматриваемом Интервале изменения условие выполняется. Поэтому единственным необходимым условием устойчивости в рассматриваемом случае будет После подстановки значений коэффициентов из (22) функция V становится полиномом пятой степени относительно величины

При абсолютно жестком роторе обращается в линейную функцию

Третье неравенство (21) приводится к виду откуда с учетом введенных безразмерных величин получается известное условие устойчивости

вертикального вращения волчка в случае Лагранжа где экваториальный момент инерции гироскопа относительно точки опоры.

1. Изменение величины при различных значениях параметров

(см. скан)

Упругие деформации оси расширяют зону неустойчивости гироскопа с гибким валом, повышая величину порога устойчивости. Для и любых значений уравнение имеет только один положительный вещественный корень В табл. 1 приведены численные величины этих корней при различных значениях параметров

Рис. 7

На рис. 7 изображены зависимости величин в функции параметра для равных 0,1; 0,6; 1. Ниже кривых расположены зоны неустойчивого вращения обращенного гиромаятника с упругой осью С увеличением гибкости вала растет угловая скорость вращения, выше которой наступает устойчивость вертикального положения его оси симметрии.

1
Оглавление
email@scask.ru