§ 7. МАКСИМУМ И МИНИМУМ. ИССЛЕДОВАНИЕ ГРАФИКОВ ФУНКЦИЙ
Одним из простейших и важных приложений производной является теория максимума и минимума. Допустим, что на некотором участке
задана функция
о которой мы будем предполагать, что она не только непрерывна, но и имеет во всех точках производную.
Рис. 15
Умение вычислять производную дает возможность ясно представить себе ход графика функции. На участке, где производная все время положительна, касательная к графику идет вверх. Функция на таком участке возрастает, т. е. большему значению х соответствует большее значение
На участке, где производная все время отрицательна, функция, наоборот, убывает; график идет вниз.
Максимум и минимум.
На рис. 15 изображен график функции
определенной на отрезке
Особенный интерес представляют точки этого графика, имеющие абсциссы
Говорят, что функция
имеет в точке
местный максимум; этим хотят выразить, что в точке
функция
больше, чем в соседних точках, точнее,
для всех х из некоторого отрезка, окружающего точку
Аналогично определяется местный минимум.
Для нашей функции местный максимум достигается в точках
а местный минимум — в точке
В каждой точке минимума или максимума, если она есть внутренняя точка отрезка
т. е. не совпадающая с его концами а и
производная должна равняться нулю.
Последнее, весьма важное утверждение следует из самого определения производной как предела отношения В самом деле, при небольшом сдвиге из точки максимума
. Поэтому при положительных
отношение неположительно, а при отрицательных
отношение неотрицательно. Предел этого отношения, который по предположению существует, уже не может быть ни положительным, ни отрицательным, и ему остается быть только нулем. Наглядно это соответствует тому, что в точках максимума или минимума (обычно опускают слово «местный», хотя и подразумевают его) касательная к графику горизонтальна. На рис. 15 можно заметить, что в точках
касательная тоже горизонтальна, как и в точках
хотя в этих точках нет ни максимума, ни минимума. Точек, в которых производная функции равна нулю (стационарных точек), может, вообще говоря, оказаться больше, чем точек максимума или минимума.