18.6. СВОБОДНАЯ КОНВЕКЦИЯ В РАЗРЕЖЕННОМ ГАЗЕ
Основной особенностью свободной конвекции в разреженном газе является то, что тепловые и гидродинамические возмущения при снижении плотности не локализуются у теплоотдающей поверхности. Толщина пограничного слоя может даже превосходить размеры теплоотдающего тела. Поэтому допущения Шмидта и Бекмана, положенные в основу решения Польгаузена, становятся неприемлемыми. Другими словами, в теоретическом плане для описания свободной конвекции нельзя исходить из уравнений пограничного слоя. Течение здесь вязкостное, с возможным влиянием температурного скачка.
Интенсивность теплообмена с учетом разрежения газа в квазинзотермических условиях свободной конвекции определяется зависимостью типа
(18.6.1)
где Ф — формпараметр.
С увеличением разрежения значение
уменьшается пропорционально квадрату плотности, и влияние этого критерия вырождается. Все более существенным становится влияние геометрии тела. Рис. 18.10 отчетливо показывает это. В предельном случае отсутствия свободной конвекции, когда
, газ представляет собой сплошную среду, анализ теплопроводности в неограниченном объеме дает для сферы
, а для цилиндра
.
Дискретность структуры газа проявляется при значении числа
. На рис. 18.11 на примере теплообмена горизонтального цилиндра диаметром 0,07 мм показаны характерные режимы переноса тепла. В области чисел
происходит резкое падение интенсивности теплообмена вследствие влияния температурного скачка.
При значительном разрежении может проявляться эффект ограниченности объема, в котором находится рассматриваемое тело. При
вследствие молекулярной теплопроводности к оболочке конечных размеров число Nu приобретает постоянное значение, превосходящее предельно малое для неограниченного объема.
Этот факт иллюстрируется экспериментальной зависимостью на рис. 18.12.
Рис. 18.10. Теплообмен при свободной конвекции в неограниченном объеме: 1 — горизонтальный цилиндр; 2 — вертикальная пластина: 3 — сфера
Рис. 18.11. Режимы теплообмена для горизонтального цилиндра
Так как для цилиндров различных диаметров при одинаковом числе
величины
кратны кубу диаметров, в координатах
данные по теплообмену обобщаются только до значений
. Для более глубоких разрежений можно применить метод Кэвено, изложенный ранее в разд. 18.3.
Рис. 18.12. Режимы теплообмена при свободной конвекции: 1 — сплошная среда; 2 — опыты А. К. Реброва в ограниченном объеме в вакууме
Рис. 18.13. Влияние числа Кнудсена на теплообмен цилиндров в воздухе по опытам А. К. Реброва
На рис. 18.13 приведены результаты такой обработки экспериментов для теплообмена цилиндров. В диапазоне
эта зависимость линейна, что подтверждает справедливость подхода, но не универсальность полученных численных значений. В данном случае необходимо еще точное знание коэффициента аккомодации.